File size: 1,871 Bytes
df2c601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
library_name: YOLO
license: cc0-1.0
tags:
- YOLO
- object-detection
- dla
- historical
metrics:
- P
- R
- mAP@50
- mAP@50-95
pipeline_tag: object-detection
version:
- YOLOv8
---

# YOLOv8 - PELLET Casimir Marius - Line + Illustration detection

This model predicts the following elements from document images:
- text line
- illustration

## Model description

The model has been trained using the YOLOv8 library on [PELLET Casimir Marius](https://huggingface.co./datasets/Teklia/PELLET-Casimir-Marius-yolov8) dataset.
It has been trained on images with their dimensions equal to 640 pixels, starting from the YOLOv8m checkpoint.

## Evaluation results

The model achieves the following results:

| Set   | Class        | Images | Instances | P     | R     | mAP@50 | mAP@50-95 |
| ----- | ------------ | ------ | --------- | ----- | ----- | ------ | --------- |
| train | all          | 80     | 881       | 0.707 | 0.823 | 0.825  | 0.457     |
|       | text line    | 80     | 843       | 0.801 | 0.73  | 0.781  | 0.275     |
|       | illustration | 80     | 38        | 0.613 | 0.916 | 0.87   | 0.64      |
| val   | all          | 10     | 129       | 0.608 | 0.872 | 0.847  | 0.493     |
|       | text line    | 10     | 125       | 0.791 | 0.744 | 0.7    | 0.256     |
|       | illustration | 10     | 4         | 0.424 | 1     | 0.995  | 0.731     |
| test  | all          | 10     | 125       | 0.767 | 0.881 | 0.932  | 0.556     |
|       | text line    | 10     | 122       | 0.903 | 0.763 | 0.868  | 0.331     |
|       | illustration | 10     | 3         | 0.631 | 1     | 0.995  | 0.78      |

## How to use?

- Download the [weights of this model](https://huggingface.co./Teklia/PELLET-CasimirMarius-YOLOv8/resolve/main/model.pt?download=true)
- Refer to the [Ultralytics documentation](https://docs.ultralytics.com/modes/predict/) to use this model.