File size: 2,687 Bytes
b22aeec
 
 
 
 
 
fbb5882
 
 
 
 
b22aeec
 
 
65fc79f
 
999cd6b
 
fbb5882
b22aeec
 
fbb5882
b22aeec
2dbe660
b22aeec
 
 
39c4be0
21ab0a3
b22aeec
 
39c4be0
 
21ab0a3
 
 
b22aeec
43a1708
 
21ab0a3
b22aeec
21ab0a3
b22aeec
39c4be0
d64ad83
21ab0a3
 
b22aeec
d64ad83
b22aeec
39c4be0
b22aeec
 
 
21ab0a3
39c4be0
 
 
 
 
 
 
 
 
21ab0a3
 
 
b22aeec
 
d5103fd
 
 
 
 
 
 
 
 
 
 
 
 
b22aeec
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: PyLaia
license: mit
tags:
- PyLaia
- PyTorch
- atr
- htr
- ocr
- historical
- handwritten
metrics:
- CER
- WER
language:
- 'no'
datasets:
- Teklia/NorHand_v1
pipeline_tag: image-to-text
---

# PyLaia - NorHand v1

This model performs Handwritten Text Recognition in Norwegian. It was developed during the [HUGIN-MUNIN project](https://hugin-munin-project.github.io/).

## Model description

The model has been trained using the PyLaia library on the [NorHand v1](https://zenodo.org/record/6542056) dataset.

Training images were resized with a fixed height of 128 pixels, keeping the original aspect ratio.

| set   | horizontal lines | 
| :---- | ------: | 
| train | 19,653  |
| val   |  2,286  |
| test  |  1,793  |

An external 6-gram character language model can be used to improve recognition. The language model is trained on the text from the NorHand v1 training set.

## Evaluation results

The model achieves the following results:

| set   | Language model | CER (%)    | WER (%) | lines     |
|:------|:---------------| ----------:| -------:|----------:|
| test  | no             |  7.94      |   24.04 |     1,793 |
| test  | yes            |  6.55      |   18.20 |     1,793 |

## How to use?

Please refer to the [PyLaia documentation](https://atr.pages.teklia.com/pylaia/usage/prediction/) to use this model.

# Cite us!

```bibtex
@inproceedings{pylaia2024,
    author = {Tarride, Solène and Schneider, Yoann and Generali-Lince, Marie and Boillet, Mélodie and Abadie, Bastien and Kermorvant, Christopher},
    title = {{Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source Library}},
    booktitle = {Document Analysis and Recognition - ICDAR 2024},
    year = {2024},
    publisher = {Springer Nature Switzerland},
    address = {Cham},
    pages = {387--404},
    isbn = {978-3-031-70549-6}
}
```

```bibtex
@inproceedings{10.1007/978-3-031-06555-2_27,
    author = {Maarand, Martin and Beyer, Yngvil and K\r{a}sen, Andre and Fosseide, Knut T. and Kermorvant, Christopher},
    title = {A Comprehensive Comparison of Open-Source Libraries for Handwritten Text Recognition in Norwegian},
    year = {2022},
    isbn = {978-3-031-06554-5},
    publisher = {Springer-Verlag},
    address = {Berlin, Heidelberg},
    url = {https://doi.org/10.1007/978-3-031-06555-2_27},
    doi = {10.1007/978-3-031-06555-2_27},
    booktitle = {Document Analysis Systems: 15th IAPR International Workshop, DAS 2022, La Rochelle, France, May 22–25, 2022, Proceedings},
    pages = {399–413},
    numpages = {15},
    keywords = {Norwegian language, Open-source, Handwriting recognition},
    location = {La Rochelle, France}
}
```