--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - sst2 metrics: - accuracy model-index: - name: '42' results: - task: name: Text Classification type: text-classification dataset: name: SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9254587155963303 --- # 42 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co./bert-large-uncased) on the SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3109 - Accuracy: 0.9255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: not_parallel - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 2105 | 0.2167 | 0.9232 | | 0.2049 | 2.0 | 4210 | 0.2375 | 0.9278 | | 0.123 | 3.0 | 6315 | 0.2636 | 0.9243 | | 0.0839 | 4.0 | 8420 | 0.2865 | 0.9243 | | 0.058 | 5.0 | 10525 | 0.3109 | 0.9255 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu113 - Datasets 2.7.1 - Tokenizers 0.11.6