--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - mnli metrics: - accuracy model-index: - name: '42' results: - task: name: Text Classification type: text-classification dataset: name: MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.8633723892002038 --- # 42 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co./bert-large-uncased) on the MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.8447 - Accuracy: 0.8634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: not_parallel - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4274 | 1.0 | 12272 | 0.3892 | 0.8524 | | 0.2844 | 2.0 | 24544 | 0.4079 | 0.8565 | | 0.1589 | 3.0 | 36816 | 0.5033 | 0.8527 | | 0.0877 | 4.0 | 49088 | 0.6624 | 0.8576 | | 0.0426 | 5.0 | 61360 | 0.8447 | 0.8634 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu113 - Datasets 2.7.1 - Tokenizers 0.11.6