--- base_model: - Sao10K/70B-L3.3-Cirrus-x1 - huihui-ai/Llama-3.3-70B-Instruct-abliterated - SicariusSicariiStuff/Negative_LLAMA_70B - TheDrummer/Anubis-70B-v1 - EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1 - Sao10K/L3.1-70B-Hanami-x1 library_name: transformers tags: - mergekit - merge license: llama3.3 --- More experimentation, for this one I kept the winning formula from Progenitor V1.1 however I changed the base model to the huihui-ai/Llama-3.3-70B-Instruct-abliterated in hopes that it's ability to follow instructions and generally increased IQ would take Progenitor to the next level. # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Linear DELLA](https://arxiv.org/abs/2406.11617) merge method using [huihui-ai/Llama-3.3-70B-Instruct-abliterated](https://huggingface.co./huihui-ai/Llama-3.3-70B-Instruct-abliterated) as a base. ### Models Merged The following models were included in the merge: * [Sao10K/70B-L3.3-Cirrus-x1](https://huggingface.co./Sao10K/70B-L3.3-Cirrus-x1) * [SicariusSicariiStuff/Negative_LLAMA_70B](https://huggingface.co./SicariusSicariiStuff/Negative_LLAMA_70B) * [TheDrummer/Anubis-70B-v1](https://huggingface.co./TheDrummer/Anubis-70B-v1) * [EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1](https://huggingface.co./EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1) * [Sao10K/L3.1-70B-Hanami-x1](https://huggingface.co./Sao10K/L3.1-70B-Hanami-x1) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: Sao10K/L3.1-70B-Hanami-x1 parameters: weight: 0.20 density: 0.7 - model: Sao10K/70B-L3.3-Cirrus-x1 parameters: weight: 0.20 density: 0.7 - model: SicariusSicariiStuff/Negative_LLAMA_70B parameters: weight: 0.20 density: 0.7 - model: TheDrummer/Anubis-70B-v1 parameters: weight: 0.20 density: 0.7 - model: EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1 parameters: weight: 0.20 density: 0.7 merge_method: della_linear base_model: huihui-ai/Llama-3.3-70B-Instruct-abliterated parameters: epsilon: 0.2 lambda: 1.1 dype: float32 out_dtype: bfloat16 tokenizer: source: union ```