--- tags: - spacy - token-classification language: - sr license: cc-by-sa-3.0 model-index: - name: sr_pner_tesla_bbmc results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.948846336 - name: NER Recall type: recall value: 0.9486537681 - name: NER F Score type: f_score value: 0.9487500423 - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.9807907809 --- sr_pner_tesla_bbmc is a spaCy model meticulously fine-tuned for Part-of-Speech Tagging and Named Entity Recognition in Serbian language texts. This advanced model incorporates a transformer layer based on bert-base-multilingual-cased, enhancing its analytical capabilities. It is proficient in identifying 7 distinct categories of entities: PERS (persons), ROLE (professions), DEMO (demonyms), ORG (organizations), LOC (locations), WORK (artworks), and EVENT (events). Detailed information about these categories is available in the accompanying table. The development of this model has been made possible through the support of the Science Fund of the Republic of Serbia, under grant #7276, for the project 'Text Embeddings - Serbian Language Applications - TESLA'. | Feature | Description | | --- | --- | | **Name** | `sr_pner_tesla_bbmc` | | **Version** | `1.0.0` | | **spaCy** | `>=3.7.2,<3.8.0` | | **Default Pipeline** | `transformer`, `tagger`, `ner` | | **Components** | `transformer`, `tagger`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | `CC BY-SA 3.0` | | **Author** | [Milica Ikonić Nešić, Saša Petalinkar, Mihailo Škorić, Ranka Stanković](https://tesla.rgf.bg.ac.rs/) | ### Label Scheme
View label scheme (23 labels for 2 components) | Component | Labels | | --- | --- | | **`tagger`** | `ADJ`, `ADP`, `ADV`, `AUX`, `CCONJ`, `DET`, `INTJ`, `NOUN`, `NUM`, `PART`, `PRON`, `PROPN`, `PUNCT`, `SCONJ`, `VERB`, `X` | | **`ner`** | `DEMO`, `EVENT`, `LOC`, `ORG`, `PERS`, `ROLE`, `WORK` |
### Accuracy | Type | Score | | --- | --- | | `TAG_ACC` | 98.08 | | `ENTS_F` | 94.88 | | `ENTS_P` | 94.88 | | `ENTS_R` | 94.87 | | `TRANSFORMER_LOSS` | 378998.39 | | `TAGGER_LOSS` | 505917.93 | | `NER_LOSS` | 205095.28 |