Tanapon commited on
Commit
57b01a1
1 Parent(s): 57d618e

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 251.64 +/- 38.84
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd05638fb90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd05638fc20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd05638fcb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd05638fd40>", "_build": "<function ActorCriticPolicy._build at 0x7fd05638fdd0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd05638fe60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd05638fef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd05638ff80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd056396050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd0563960e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd056396170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd0563cfe10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653043157.1865463, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAAMcqvUjPgbpuqN08TcNvtUigzTrFXWK0AAAAAAAAAAAAVIm8bDOmu5Ip3Dsnqo48npMEveCicj0AAIA/AACAP7Novb1tdGM+QjbHPTB5lr5nsmi8CtWsPQAAAAAAAAAAmsm6PJY+pj8Jh4w+RtYnv/E1mTyfBQQ+AAAAAAAAAADgXCu+j5dFvNMm5bzQUDW7RvusPd50FDwAAIA/AACAP1oX+j2z7D0/ItmgvYFXCb9qVq09ZhDNvQAAAAAAAAAA2re8PRznZLwt0W69mU4EPRCO7Dz4pFU9AACAPwAAgD8g/Qi+YPowP2rWOb2ua+u+rLkOvrX12j0AAAAAAAAAAM0EIT1k3bM/Ag7tPs7K/r3pPfA6kB3xPQAAAAAAAAAAgIEqveiTuj9re3m+k3qOvRshdTzwHlO9AAAAAAAAAACd5qa+L+kNP960Mj1B2fe+ez9nvtPr7T0AAAAAAAAAAM2bHT172JG64tE6vfctHznTBPy668SPuAAAgD8AAIA/moR6vZsqMD/243m8AuDgviXBOb1U5wo9AAAAAAAAAADaL+E9ZEl5PtV+Lr7rv5W+8nbCvKBW9b0AAAAAAAAAABpynb2W7pA//qBZvkGFD7/jsG29qofsvAAAAAAAAAAA5tdfPbxruT44O/G9MpXZvs/LKb2uLYe8AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVOhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIw35PrFM7cUCUhpRSlIwBbJRL7owBdJRHQKAx3AMUh3d1fZQoaAZoCWgPQwj8VuvEJbhxQJSGlFKUaBVNRwFoFkdAoDIon8baRXV9lChoBmgJaA9DCMoxWdy/8HJAlIaUUpRoFU0eAWgWR0CgMnlPBSDRdX2UKGgGaAloD0MIn3QiwVQlbkCUhpRSlGgVTQoBaBZHQKAyhU+9rXV1fZQoaAZoCWgPQwiDF30FaVpxQJSGlFKUaBVNNAFoFkdAoDKEuL74z3V9lChoBmgJaA9DCAeWI2TgQ3FAlIaUUpRoFUv5aBZHQKAyjndweeZ1fZQoaAZoCWgPQwi3YRQEj19QQJSGlFKUaBVLwGgWR0CgMyyX+l0pdX2UKGgGaAloD0MIVOHP8GZRcUCUhpRSlGgVTQcBaBZHQKAzT++/QBx1fZQoaAZoCWgPQwjpX5LKlMRwQJSGlFKUaBVNmgFoFkdAoDN9diUgS3V9lChoBmgJaA9DCL2L9+P2/XJAlIaUUpRoFUvpaBZHQKAz2s0YTCd1fZQoaAZoCWgPQwi+iLZj6odxQJSGlFKUaBVLwmgWR0CgNDF6AvtddX2UKGgGaAloD0MIpwNZT+0jckCUhpRSlGgVTSkBaBZHQKA1A2ycCo11fZQoaAZoCWgPQwg1YfvJmINtQJSGlFKUaBVL4mgWR0CgNQKlYU35dX2UKGgGaAloD0MI2H4yxsc0ckCUhpRSlGgVS+5oFkdAoDUC814xDnV9lChoBmgJaA9DCFbysbtAVnNAlIaUUpRoFUvmaBZHQKA1ENEPUa11fZQoaAZoCWgPQwhQxvgwu0FwQJSGlFKUaBVL2mgWR0CgNgGLUCq7dX2UKGgGaAloD0MIPBVwz/NRb0CUhpRSlGgVS+9oFkdAoDYBV2iconV9lChoBmgJaA9DCOZciquKpHBAlIaUUpRoFU0GAWgWR0CgNh7di2DydX2UKGgGaAloD0MIFJhO67ZScECUhpRSlGgVTRYBaBZHQKA2TzfaYeF1fZQoaAZoCWgPQwg9ZTVdD3dyQJSGlFKUaBVNAQFoFkdAoDaXw5NoJ3V9lChoBmgJaA9DCGJqSx2k1HNAlIaUUpRoFU0AAWgWR0CgNp4pc5bRdX2UKGgGaAloD0MIIeS8/0+TcUCUhpRSlGgVS+RoFkdAoDcpc1O0s3V9lChoBmgJaA9DCNjV5ClroHFAlIaUUpRoFU0IAWgWR0CgN2eXqqwRdX2UKGgGaAloD0MIqcDJNnCMcUCUhpRSlGgVTQ0BaBZHQKA3n6/qPfd1fZQoaAZoCWgPQwjRIXAk0KZwQJSGlFKUaBVL1WgWR0CgN612JSBLdX2UKGgGaAloD0MIBhGpaReBckCUhpRSlGgVTVcBaBZHQKA3/yT6i0x1fZQoaAZoCWgPQwjZl2w8WJdvQJSGlFKUaBVL4WgWR0CgOLN/nW8RdX2UKGgGaAloD0MIaYzWUVVTcUCUhpRSlGgVTSwBaBZHQKA4vzYmLLp1fZQoaAZoCWgPQwjayHVTCmpxQJSGlFKUaBVL8WgWR0CgOPWhh6SldX2UKGgGaAloD0MIqDl5kYkDc0CUhpRSlGgVS/JoFkdAoDkHsVtXP3V9lChoBmgJaA9DCB0gmKOH5XFAlIaUUpRoFUv2aBZHQKA5DIsAeaN1fZQoaAZoCWgPQwh+Uu3T8RBJQJSGlFKUaBVLmGgWR0CgSVC4rjHXdX2UKGgGaAloD0MIkX2QZcGYb0CUhpRSlGgVS+JoFkdAoEl52W6bv3V9lChoBmgJaA9DCHycacJ2DnJAlIaUUpRoFUvoaBZHQKBJke18b711fZQoaAZoCWgPQwhanZyhOEJtQJSGlFKUaBVNHAFoFkdAoEna59Vmz3V9lChoBmgJaA9DCM3IIHdRX3JAlIaUUpRoFU0jAWgWR0CgSfn8jzI4dX2UKGgGaAloD0MIQ8nk1I7ccECUhpRSlGgVTRgBaBZHQKBKGZUkv9N1fZQoaAZoCWgPQwiuKZDZWT5vQJSGlFKUaBVNJwFoFkdAoEov5HmRvHV9lChoBmgJaA9DCGgFhqyuq3BAlIaUUpRoFUv8aBZHQKBKlRc/t6Z1fZQoaAZoCWgPQwg6P8VxYN9wQJSGlFKUaBVL32gWR0CgSqPNeMQ3dX2UKGgGaAloD0MI5pSAmERVc0CUhpRSlGgVTREBaBZHQKBLIPfbblB1fZQoaAZoCWgPQwg/4lesYdZyQJSGlFKUaBVL12gWR0CgS7gOjIq9dX2UKGgGaAloD0MIYXE48ysmckCUhpRSlGgVS9hoFkdAoEvPF5v9+HV9lChoBmgJaA9DCBajrrW3f3BAlIaUUpRoFUvraBZHQKBL1O58Sf11fZQoaAZoCWgPQwgwSzs1F6dwQJSGlFKUaBVL22gWR0CgS9+9zwMIdX2UKGgGaAloD0MIfqmfN5USckCUhpRSlGgVTR8BaBZHQKBL9AmiQDF1fZQoaAZoCWgPQwhAaahRSOduQJSGlFKUaBVL9mgWR0CgS/SAH3UQdX2UKGgGaAloD0MIAhHiypm7cUCUhpRSlGgVS+poFkdAoE0eNFSbY3V9lChoBmgJaA9DCJnwS/28aXBAlIaUUpRoFUvlaBZHQKBNK9zOopB1fZQoaAZoCWgPQwjm5bD7zg5yQJSGlFKUaBVL0WgWR0CgTUm9YfW+dX2UKGgGaAloD0MIhe/9DRpeckCUhpRSlGgVS9JoFkdAoE13zYmLL3V9lChoBmgJaA9DCHkEN1L2THBAlIaUUpRoFUvnaBZHQKBNhW4EwFl1fZQoaAZoCWgPQwhy32qduCBJQJSGlFKUaBVLn2gWR0CgTZ9PtUn5dX2UKGgGaAloD0MIOj5anDHRcUCUhpRSlGgVTQIBaBZHQKBNsVzp5eJ1fZQoaAZoCWgPQwjilLn5BrRxQJSGlFKUaBVLy2gWR0CgTcqqGUOedX2UKGgGaAloD0MILESHwBFJc0CUhpRSlGgVS99oFkdAoE4IJ9iMHnV9lChoBmgJaA9DCJLp0On5Qm5AlIaUUpRoFU0DAWgWR0CgTiFcQiA2dX2UKGgGaAloD0MI2EroLsmeckCUhpRSlGgVS91oFkdAoE8ZQYUFjnV9lChoBmgJaA9DCN2yQ/zD1G1AlIaUUpRoFUvbaBZHQKBPLWeYlY51fZQoaAZoCWgPQwhEUgsl0yJwQJSGlFKUaBVL5mgWR0CgT1NVBD5TdX2UKGgGaAloD0MI1jVaDvQscECUhpRSlGgVS+JoFkdAoE9p8rqdH3V9lChoBmgJaA9DCIDTu3i/mXBAlIaUUpRoFUvvaBZHQKBPm78vVVh1fZQoaAZoCWgPQwhOl8XEZo9xQJSGlFKUaBVNCQFoFkdAoE/sJfICEHV9lChoBmgJaA9DCNdOlITEeHBAlIaUUpRoFUvOaBZHQKBQSnuy/sV1fZQoaAZoCWgPQwj2su20NQtTQJSGlFKUaBVLm2gWR0CgUI2AoXsPdX2UKGgGaAloD0MIqfsApHZPcUCUhpRSlGgVS8BoFkdAoFCq3/givHV9lChoBmgJaA9DCC15PC2/4XFAlIaUUpRoFUvlaBZHQKBQukIomXx1fZQoaAZoCWgPQwh+kGXBBHFzQJSGlFKUaBVL1WgWR0CgUNLUTcqOdX2UKGgGaAloD0MInIcTmM5Tb0CUhpRSlGgVS+poFkdAoFDpZjhDPXV9lChoBmgJaA9DCOyjU1e+xXFAlIaUUpRoFUv+aBZHQKBRXjOLR8d1fZQoaAZoCWgPQwgychb2dERzQJSGlFKUaBVL8WgWR0CgUX2XkYGddX2UKGgGaAloD0MIniXICGhpcECUhpRSlGgVTRABaBZHQKBRxaQmu1Z1fZQoaAZoCWgPQwj0p43qNHpxQJSGlFKUaBVNAwFoFkdAoFH5Uo8ZDXV9lChoBmgJaA9DCBCv6xesX3BAlIaUUpRoFUvaaBZHQKBSqu4gA6x1fZQoaAZoCWgPQwh4fHvXIJpyQJSGlFKUaBVL+GgWR0CgUurfDUExdX2UKGgGaAloD0MINj6T/TNacECUhpRSlGgVS9doFkdAoFNBxR2r4nV9lChoBmgJaA9DCFwea0YGZXNAlIaUUpRoFU0KAWgWR0CgU0tDUmUodX2UKGgGaAloD0MIAg8MIDyUcUCUhpRSlGgVS/xoFkdAoFNSBiCrcXV9lChoBmgJaA9DCI6wqIgTGnNAlIaUUpRoFUv/aBZHQKBTkM3qAz51fZQoaAZoCWgPQwhxH7k1aXxuQJSGlFKUaBVL12gWR0CgU91FYuCgdX2UKGgGaAloD0MIUfhsHZy2bkCUhpRSlGgVS9doFkdAoFQJeqrBCXV9lChoBmgJaA9DCJ0PzxKkanFAlIaUUpRoFUv6aBZHQKBULxMnJDF1fZQoaAZoCWgPQwiVD0HVqF9xQJSGlFKUaBVL8GgWR0CgVGUIsyzpdX2UKGgGaAloD0MIcxHfiZnKckCUhpRSlGgVS/JoFkdAoFSueDnNgXV9lChoBmgJaA9DCEqzeRwGsnFAlIaUUpRoFUvfaBZHQKBU4Jng5zZ1fZQoaAZoCWgPQwh6qG3D6ARyQJSGlFKUaBVNFAFoFkdAoFUbL0SRKnV9lChoBmgJaA9DCCGtMeiEL3JAlIaUUpRoFUvmaBZHQKBVG4UeuFJ1fZQoaAZoCWgPQwiDhZM0f3pwQJSGlFKUaBVL22gWR0CgVXdCu2ZzdX2UKGgGaAloD0MIPdF14YdWckCUhpRSlGgVS/VoFkdAoFWjb8FY+3V9lChoBmgJaA9DCEIj2Lj+WnJAlIaUUpRoFUvEaBZHQKBWcXu3MIN1fZQoaAZoCWgPQwi/tn76D4hyQJSGlFKUaBVL32gWR0CgVn6DXe3ydX2UKGgGaAloD0MIInGPpQ/jcUCUhpRSlGgVS9RoFkdAoFawO4G2TnV9lChoBmgJaA9DCNbG2AlvCHNAlIaUUpRoFU0MAWgWR0CgVvXr2QGOdX2UKGgGaAloD0MISl8IOW8mcECUhpRSlGgVS91oFkdAoFcaMefZmXV9lChoBmgJaA9DCJGb4Qa88XFAlIaUUpRoFUv2aBZHQKBXL36hxo91fZQoaAZoCWgPQwjO34RCRIFzQJSGlFKUaBVL5WgWR0CgV4SflIVedX2UKGgGaAloD0MIm3XG9wU0cECUhpRSlGgVS9loFkdAoFfU/W1+iXV9lChoBmgJaA9DCGTL8nVZ4nFAlIaUUpRoFUv9aBZHQKBYN80DU3J1fZQoaAZoCWgPQwjuJvim6atvQJSGlFKUaBVL52gWR0CgWFohQm/ndX2UKGgGaAloD0MIqWvtfWqccECUhpRSlGgVS9poFkdAoFhaEal1sHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c94fc25613bc9cab2220dd98c633babb9ad8abf48cdb5ea69d067489e52eff70
3
+ size 144130
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd05638fb90>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd05638fc20>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd05638fcb0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd05638fd40>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd05638fdd0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd05638fe60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd05638fef0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd05638ff80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd056396050>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd0563960e0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd056396170>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fd0563cfe10>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1507328,
46
+ "_total_timesteps": 1500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1653043157.1865463,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAAMcqvUjPgbpuqN08TcNvtUigzTrFXWK0AAAAAAAAAAAAVIm8bDOmu5Ip3Dsnqo48npMEveCicj0AAIA/AACAP7Novb1tdGM+QjbHPTB5lr5nsmi8CtWsPQAAAAAAAAAAmsm6PJY+pj8Jh4w+RtYnv/E1mTyfBQQ+AAAAAAAAAADgXCu+j5dFvNMm5bzQUDW7RvusPd50FDwAAIA/AACAP1oX+j2z7D0/ItmgvYFXCb9qVq09ZhDNvQAAAAAAAAAA2re8PRznZLwt0W69mU4EPRCO7Dz4pFU9AACAPwAAgD8g/Qi+YPowP2rWOb2ua+u+rLkOvrX12j0AAAAAAAAAAM0EIT1k3bM/Ag7tPs7K/r3pPfA6kB3xPQAAAAAAAAAAgIEqveiTuj9re3m+k3qOvRshdTzwHlO9AAAAAAAAAACd5qa+L+kNP960Mj1B2fe+ez9nvtPr7T0AAAAAAAAAAM2bHT172JG64tE6vfctHznTBPy668SPuAAAgD8AAIA/moR6vZsqMD/243m8AuDgviXBOb1U5wo9AAAAAAAAAADaL+E9ZEl5PtV+Lr7rv5W+8nbCvKBW9b0AAAAAAAAAABpynb2W7pA//qBZvkGFD7/jsG29qofsvAAAAAAAAAAA5tdfPbxruT44O/G9MpXZvs/LKb2uLYe8AAAAAAAAAACUdJRiLg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.004885333333333408,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVOhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIw35PrFM7cUCUhpRSlIwBbJRL7owBdJRHQKAx3AMUh3d1fZQoaAZoCWgPQwj8VuvEJbhxQJSGlFKUaBVNRwFoFkdAoDIon8baRXV9lChoBmgJaA9DCMoxWdy/8HJAlIaUUpRoFU0eAWgWR0CgMnlPBSDRdX2UKGgGaAloD0MIn3QiwVQlbkCUhpRSlGgVTQoBaBZHQKAyhU+9rXV1fZQoaAZoCWgPQwiDF30FaVpxQJSGlFKUaBVNNAFoFkdAoDKEuL74z3V9lChoBmgJaA9DCAeWI2TgQ3FAlIaUUpRoFUv5aBZHQKAyjndweeZ1fZQoaAZoCWgPQwi3YRQEj19QQJSGlFKUaBVLwGgWR0CgMyyX+l0pdX2UKGgGaAloD0MIVOHP8GZRcUCUhpRSlGgVTQcBaBZHQKAzT++/QBx1fZQoaAZoCWgPQwjpX5LKlMRwQJSGlFKUaBVNmgFoFkdAoDN9diUgS3V9lChoBmgJaA9DCL2L9+P2/XJAlIaUUpRoFUvpaBZHQKAz2s0YTCd1fZQoaAZoCWgPQwi+iLZj6odxQJSGlFKUaBVLwmgWR0CgNDF6AvtddX2UKGgGaAloD0MIpwNZT+0jckCUhpRSlGgVTSkBaBZHQKA1A2ycCo11fZQoaAZoCWgPQwg1YfvJmINtQJSGlFKUaBVL4mgWR0CgNQKlYU35dX2UKGgGaAloD0MI2H4yxsc0ckCUhpRSlGgVS+5oFkdAoDUC814xDnV9lChoBmgJaA9DCFbysbtAVnNAlIaUUpRoFUvmaBZHQKA1ENEPUa11fZQoaAZoCWgPQwhQxvgwu0FwQJSGlFKUaBVL2mgWR0CgNgGLUCq7dX2UKGgGaAloD0MIPBVwz/NRb0CUhpRSlGgVS+9oFkdAoDYBV2iconV9lChoBmgJaA9DCOZciquKpHBAlIaUUpRoFU0GAWgWR0CgNh7di2DydX2UKGgGaAloD0MIFJhO67ZScECUhpRSlGgVTRYBaBZHQKA2TzfaYeF1fZQoaAZoCWgPQwg9ZTVdD3dyQJSGlFKUaBVNAQFoFkdAoDaXw5NoJ3V9lChoBmgJaA9DCGJqSx2k1HNAlIaUUpRoFU0AAWgWR0CgNp4pc5bRdX2UKGgGaAloD0MIIeS8/0+TcUCUhpRSlGgVS+RoFkdAoDcpc1O0s3V9lChoBmgJaA9DCNjV5ClroHFAlIaUUpRoFU0IAWgWR0CgN2eXqqwRdX2UKGgGaAloD0MIqcDJNnCMcUCUhpRSlGgVTQ0BaBZHQKA3n6/qPfd1fZQoaAZoCWgPQwjRIXAk0KZwQJSGlFKUaBVL1WgWR0CgN612JSBLdX2UKGgGaAloD0MIBhGpaReBckCUhpRSlGgVTVcBaBZHQKA3/yT6i0x1fZQoaAZoCWgPQwjZl2w8WJdvQJSGlFKUaBVL4WgWR0CgOLN/nW8RdX2UKGgGaAloD0MIaYzWUVVTcUCUhpRSlGgVTSwBaBZHQKA4vzYmLLp1fZQoaAZoCWgPQwjayHVTCmpxQJSGlFKUaBVL8WgWR0CgOPWhh6SldX2UKGgGaAloD0MIqDl5kYkDc0CUhpRSlGgVS/JoFkdAoDkHsVtXP3V9lChoBmgJaA9DCB0gmKOH5XFAlIaUUpRoFUv2aBZHQKA5DIsAeaN1fZQoaAZoCWgPQwh+Uu3T8RBJQJSGlFKUaBVLmGgWR0CgSVC4rjHXdX2UKGgGaAloD0MIkX2QZcGYb0CUhpRSlGgVS+JoFkdAoEl52W6bv3V9lChoBmgJaA9DCHycacJ2DnJAlIaUUpRoFUvoaBZHQKBJke18b711fZQoaAZoCWgPQwhanZyhOEJtQJSGlFKUaBVNHAFoFkdAoEna59Vmz3V9lChoBmgJaA9DCM3IIHdRX3JAlIaUUpRoFU0jAWgWR0CgSfn8jzI4dX2UKGgGaAloD0MIQ8nk1I7ccECUhpRSlGgVTRgBaBZHQKBKGZUkv9N1fZQoaAZoCWgPQwiuKZDZWT5vQJSGlFKUaBVNJwFoFkdAoEov5HmRvHV9lChoBmgJaA9DCGgFhqyuq3BAlIaUUpRoFUv8aBZHQKBKlRc/t6Z1fZQoaAZoCWgPQwg6P8VxYN9wQJSGlFKUaBVL32gWR0CgSqPNeMQ3dX2UKGgGaAloD0MI5pSAmERVc0CUhpRSlGgVTREBaBZHQKBLIPfbblB1fZQoaAZoCWgPQwg/4lesYdZyQJSGlFKUaBVL12gWR0CgS7gOjIq9dX2UKGgGaAloD0MIYXE48ysmckCUhpRSlGgVS9hoFkdAoEvPF5v9+HV9lChoBmgJaA9DCBajrrW3f3BAlIaUUpRoFUvraBZHQKBL1O58Sf11fZQoaAZoCWgPQwgwSzs1F6dwQJSGlFKUaBVL22gWR0CgS9+9zwMIdX2UKGgGaAloD0MIfqmfN5USckCUhpRSlGgVTR8BaBZHQKBL9AmiQDF1fZQoaAZoCWgPQwhAaahRSOduQJSGlFKUaBVL9mgWR0CgS/SAH3UQdX2UKGgGaAloD0MIAhHiypm7cUCUhpRSlGgVS+poFkdAoE0eNFSbY3V9lChoBmgJaA9DCJnwS/28aXBAlIaUUpRoFUvlaBZHQKBNK9zOopB1fZQoaAZoCWgPQwjm5bD7zg5yQJSGlFKUaBVL0WgWR0CgTUm9YfW+dX2UKGgGaAloD0MIhe/9DRpeckCUhpRSlGgVS9JoFkdAoE13zYmLL3V9lChoBmgJaA9DCHkEN1L2THBAlIaUUpRoFUvnaBZHQKBNhW4EwFl1fZQoaAZoCWgPQwhy32qduCBJQJSGlFKUaBVLn2gWR0CgTZ9PtUn5dX2UKGgGaAloD0MIOj5anDHRcUCUhpRSlGgVTQIBaBZHQKBNsVzp5eJ1fZQoaAZoCWgPQwjilLn5BrRxQJSGlFKUaBVLy2gWR0CgTcqqGUOedX2UKGgGaAloD0MILESHwBFJc0CUhpRSlGgVS99oFkdAoE4IJ9iMHnV9lChoBmgJaA9DCJLp0On5Qm5AlIaUUpRoFU0DAWgWR0CgTiFcQiA2dX2UKGgGaAloD0MI2EroLsmeckCUhpRSlGgVS91oFkdAoE8ZQYUFjnV9lChoBmgJaA9DCN2yQ/zD1G1AlIaUUpRoFUvbaBZHQKBPLWeYlY51fZQoaAZoCWgPQwhEUgsl0yJwQJSGlFKUaBVL5mgWR0CgT1NVBD5TdX2UKGgGaAloD0MI1jVaDvQscECUhpRSlGgVS+JoFkdAoE9p8rqdH3V9lChoBmgJaA9DCIDTu3i/mXBAlIaUUpRoFUvvaBZHQKBPm78vVVh1fZQoaAZoCWgPQwhOl8XEZo9xQJSGlFKUaBVNCQFoFkdAoE/sJfICEHV9lChoBmgJaA9DCNdOlITEeHBAlIaUUpRoFUvOaBZHQKBQSnuy/sV1fZQoaAZoCWgPQwj2su20NQtTQJSGlFKUaBVLm2gWR0CgUI2AoXsPdX2UKGgGaAloD0MIqfsApHZPcUCUhpRSlGgVS8BoFkdAoFCq3/givHV9lChoBmgJaA9DCC15PC2/4XFAlIaUUpRoFUvlaBZHQKBQukIomXx1fZQoaAZoCWgPQwh+kGXBBHFzQJSGlFKUaBVL1WgWR0CgUNLUTcqOdX2UKGgGaAloD0MInIcTmM5Tb0CUhpRSlGgVS+poFkdAoFDpZjhDPXV9lChoBmgJaA9DCOyjU1e+xXFAlIaUUpRoFUv+aBZHQKBRXjOLR8d1fZQoaAZoCWgPQwgychb2dERzQJSGlFKUaBVL8WgWR0CgUX2XkYGddX2UKGgGaAloD0MIniXICGhpcECUhpRSlGgVTRABaBZHQKBRxaQmu1Z1fZQoaAZoCWgPQwj0p43qNHpxQJSGlFKUaBVNAwFoFkdAoFH5Uo8ZDXV9lChoBmgJaA9DCBCv6xesX3BAlIaUUpRoFUvaaBZHQKBSqu4gA6x1fZQoaAZoCWgPQwh4fHvXIJpyQJSGlFKUaBVL+GgWR0CgUurfDUExdX2UKGgGaAloD0MINj6T/TNacECUhpRSlGgVS9doFkdAoFNBxR2r4nV9lChoBmgJaA9DCFwea0YGZXNAlIaUUpRoFU0KAWgWR0CgU0tDUmUodX2UKGgGaAloD0MIAg8MIDyUcUCUhpRSlGgVS/xoFkdAoFNSBiCrcXV9lChoBmgJaA9DCI6wqIgTGnNAlIaUUpRoFUv/aBZHQKBTkM3qAz51fZQoaAZoCWgPQwhxH7k1aXxuQJSGlFKUaBVL12gWR0CgU91FYuCgdX2UKGgGaAloD0MIUfhsHZy2bkCUhpRSlGgVS9doFkdAoFQJeqrBCXV9lChoBmgJaA9DCJ0PzxKkanFAlIaUUpRoFUv6aBZHQKBULxMnJDF1fZQoaAZoCWgPQwiVD0HVqF9xQJSGlFKUaBVL8GgWR0CgVGUIsyzpdX2UKGgGaAloD0MIcxHfiZnKckCUhpRSlGgVS/JoFkdAoFSueDnNgXV9lChoBmgJaA9DCEqzeRwGsnFAlIaUUpRoFUvfaBZHQKBU4Jng5zZ1fZQoaAZoCWgPQwh6qG3D6ARyQJSGlFKUaBVNFAFoFkdAoFUbL0SRKnV9lChoBmgJaA9DCCGtMeiEL3JAlIaUUpRoFUvmaBZHQKBVG4UeuFJ1fZQoaAZoCWgPQwiDhZM0f3pwQJSGlFKUaBVL22gWR0CgVXdCu2ZzdX2UKGgGaAloD0MIPdF14YdWckCUhpRSlGgVS/VoFkdAoFWjb8FY+3V9lChoBmgJaA9DCEIj2Lj+WnJAlIaUUpRoFUvEaBZHQKBWcXu3MIN1fZQoaAZoCWgPQwi/tn76D4hyQJSGlFKUaBVL32gWR0CgVn6DXe3ydX2UKGgGaAloD0MIInGPpQ/jcUCUhpRSlGgVS9RoFkdAoFawO4G2TnV9lChoBmgJaA9DCNbG2AlvCHNAlIaUUpRoFU0MAWgWR0CgVvXr2QGOdX2UKGgGaAloD0MISl8IOW8mcECUhpRSlGgVS91oFkdAoFcaMefZmXV9lChoBmgJaA9DCJGb4Qa88XFAlIaUUpRoFUv2aBZHQKBXL36hxo91fZQoaAZoCWgPQwjO34RCRIFzQJSGlFKUaBVL5WgWR0CgV4SflIVedX2UKGgGaAloD0MIm3XG9wU0cECUhpRSlGgVS9loFkdAoFfU/W1+iXV9lChoBmgJaA9DCGTL8nVZ4nFAlIaUUpRoFUv9aBZHQKBYN80DU3J1fZQoaAZoCWgPQwjuJvim6atvQJSGlFKUaBVL52gWR0CgWFohQm/ndX2UKGgGaAloD0MIqWvtfWqccECUhpRSlGgVS9poFkdAoFhaEal1sHVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 368,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaca16a8cc6265992085436c16ab1aa908b63cd74a392789cd1e64a2df540590
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f526786d74b5adf26ec124c816153a83f3b459e9fcfff7fe744d87cfe8d90797
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3c9ca53f3ea9844d6ea74b5a354f97c7c5a07f6cb7ca75d85ffa3415f078e6f
3
+ size 186457
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 251.636189459122, "std_reward": 38.843322010169516, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-20T11:15:55.299300"}