TanelAlumae
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,75 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language: et
|
4 |
+
tags:
|
5 |
+
- audio
|
6 |
+
- automatic-speech-recognition
|
7 |
+
#widget:
|
8 |
+
#- example_title: Librispeech sample 1
|
9 |
+
# src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
|
10 |
+
#- example_title: Librispeech sample 2
|
11 |
+
# src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
|
12 |
+
pipeline_tag: automatic-speech-recognition
|
13 |
+
base_model:
|
14 |
+
- openai/whisper-large-v3-turbo
|
15 |
+
library_name: transformers
|
16 |
+
---
|
17 |
+
|
18 |
+
## Introduction
|
19 |
+
|
20 |
+
This model is OpenAI Whisper large-v3-turbo, finetuned on ~770 hours of manually created subtitles from Estonian TV (ETV).
|
21 |
+
Therefore, this model does not always create verbatim (word-by-word) subtitles but often rephrases the sentences and
|
22 |
+
compresses text, especially in the case of spontaneous speech, hestitations, repetitions, etc. However, the length
|
23 |
+
of the generated text chunks almost always conforms to the ETV subtitle requirements (48 characters per line).
|
24 |
+
|
25 |
+
## Usage
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
It's a finetuned vesion of Whisper large-v3-turbo and can be therefore used via Hugging Face 🤗 Transformers. To run the model, first install the Transformers
|
30 |
+
library. For this example, we'll also install 🤗 Accelerate to reduce the model loading time:
|
31 |
+
|
32 |
+
```bash
|
33 |
+
pip install --upgrade pip
|
34 |
+
pip install --upgrade transformers accelerate
|
35 |
+
```
|
36 |
+
|
37 |
+
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
38 |
+
class to transcribe audios of arbitrary length:
|
39 |
+
|
40 |
+
```python
|
41 |
+
import torch
|
42 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
43 |
+
from datasets import load_dataset
|
44 |
+
|
45 |
+
|
46 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
47 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
48 |
+
|
49 |
+
model_id = "TalTechNLP/whisper-large-v3-turbo-et-subs"
|
50 |
+
|
51 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
52 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
53 |
+
)
|
54 |
+
model.to(device)
|
55 |
+
|
56 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
57 |
+
|
58 |
+
pipe = pipeline(
|
59 |
+
"automatic-speech-recognition",
|
60 |
+
model=model,
|
61 |
+
tokenizer=processor.tokenizer,
|
62 |
+
feature_extractor=processor.feature_extractor,
|
63 |
+
torch_dtype=torch_dtype,
|
64 |
+
device=device,
|
65 |
+
)
|
66 |
+
|
67 |
+
audio = "sample.mp3"
|
68 |
+
|
69 |
+
result = pipe(sample, generate_kwargs={"task": "transcribe", "language": "et"})
|
70 |
+
print(result)
|
71 |
+
```
|
72 |
+
|
73 |
+
## Evaluation results
|
74 |
+
|
75 |
+
TODO
|