--- license: mit language: - tr pipeline_tag: text-classification tags: - text-classification --- ## Model Description This model has been fine-tuned using [dbmdz/bert-base-turkish-128k-uncased](https://huggingface.co./dbmdz/bert-base-turkish-128k-uncased) model. This model created for detecting gibberish sentences like "adssnfjnfjn" . It is a simple binary classification project that gives sentence is gibberish or real. ## Usage ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = AutoModelForSequenceClassification.from_pretrained("TURKCELL/gibberish-detection-model-tr") tokenizer = AutoTokenizer.from_pretrained("TURKCELL/gibberish-detection-model-tr", do_lower_case=True, use_fast=True) model.to(device) def get_result_for_one_sample(model, tokenizer, device, sample): d = { 1: 'gibberish', 0: 'real' } test_sample = tokenizer([sample], padding=True, truncation=True, max_length=256, return_tensors='pt').to(device) # test_sample output = model(**test_sample) y_pred = np.argmax(output.logits.detach().to('cpu').numpy(), axis=1) return d[y_pred[0]] sentence = "nabeer rdahdaajdajdnjnjf" result = get_result_for_one_sample(model, tokenizer, device, sentence) print(result) ```