File size: 7,085 Bytes
1f5f5a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9efa5ee
1f5f5a1
 
 
 
9efa5ee
 
 
 
 
1f5f5a1
9efa5ee
1f5f5a1
9efa5ee
1f5f5a1
 
 
 
9efa5ee
1f5f5a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
---
license: apache-2.0
---

Set the Cookiecutter-MLOps in Hugging Face
==============================================

 1 - Create Model repository in Hugging Face (e.g. myHFrepo)
 
 2 - Clone your Hugging face repo to your local directory:
	
	cd /path/to/parent directory of project folder
	git clone [email protected]:USERNAME/myHFrepo
	
   For ssh connection check [here](https://huggingface.co./docs/hub/security-git-ssh#add-a-ssh-key-to-your-account)

 3 -  Create your virtual environment (e.g. jointvenv) 
	
	cd myHFrepo
	python -m venv jointvenv
	source jointvenv/bin/activate

 4 - Transfer and set DagsHub's cookiecutter template employing MLOps best practices to your Huggingface repo
	
	git clone https://dagshub.com/DagsHub/Cookiecutter-MLOps.git
	
  4.1 - Delete git files cloned from Cookiecutter-MLOps repo
	
	rm -r /path/to/myHFrepo/Cookiecutter-MLOps/.git

  4.2 -  Resolve conflicts with .gitattributes (add explanation? e.g. what's in .gitattributes?)

	cat /path/to/myHFrepo/Cookiecutter-MLOps/.gitattributes >> /path/to/myHFrepo/.gitattributes
	rm /path/to/myHFrepo/Cookiecutter-MLOps/.gitattributes
	git add .gitattributes
	git commit -m "Concatenate .gitattributes info from DagsHub/Cookiecutter-MLOps"

  4.3 -  Resolve conflicts with README.md (simplified steps, do we actually need to keep it?)
  
	mv /path/to/myHFrepo/Cookiecutter-MLOps/README.md /path/to/myHFrepo/README.md
	git add README.md
	git commit -m "Get README info from DagsHub/Cookiecutter-MLOps"
	
  4.4 - Move remaining files from DagsHub/Cookiecutter-MLOps to your Hugging Face repo .gitattributes and README.md

	cd /path/to/myHFrepo/Cookiecutter-MLOps
	mv * .[^.]* ..
	cd /path/to/myHFrepo
	rmdir /path/to/myHFrepo/Cookiecutter-MLOps

 5 - Add venv folder to.gitignore

	echo '' >> .gitignore
	echo '#'Virtual Environment >> .gitignore
	echo jointvenv/ >> .gitignore
	git add .
	git commit -m "add remaining DagsHub/Cookiecutter-MLOps repo content"

 6 - Run step 2 from DagsHub/Cookiecutter-MLOps

	make dirs

 7 - Run step 4 from DagsHub/Cookiecutter-MLOps
	
	make requirements

 8 - Keep record of your own requirements
 
	mv requirements.txt requirementsCookiecutter-MLOps.txt
	git add requirementsCookiecutter-MLOps.txt
	git commit -m "external requirements from Cookiecutter-MLOps"

	pip freeze > requirements.txt
	git add requirements.txt
	git commit -m "First report venv requirements"

 9 - Push your changes to the remote Hugging face repository

	git push origin main

 10 - Optional Create Model repository in your Hugging Face organization (e.g. myHFrepo)

	git remote add dcc [email protected]:MYORG/mywslHFrepo
	git pull dcc main --allow-unrelated-histories

Resolve conflicts in .gitattributes and README.md
	
	git add .
	git commit -m "Merge HuggingFace individual and organization repos"
	git push dcc main

==============================
Cookiecutter-MLOps
==============================

A cookiecutter template employing MLOps best practices, so you can focus on building machine learning products while
having MLOps best practices applied.

Instructions
------------
1. Clone the repo.
2. Run `make dirs` to create the missing parts of the directory structure described below.
3. *Optional:* Run `make virtualenv` to create a python virtual environment. Skip if using conda or some other env manager.
    1. Run `source env/bin/activate` to activate the virtualenv.
4. Run `make requirements` to install required python packages.
5. Put the raw data in `data/raw`.
6. To save the raw data to the DVC cache, run `dvc add data/raw`
7. Edit the code files to your heart's desire.
8. Process your data, train and evaluate your model using `dvc repro` or `make reproduce`
9. To run the pre-commit hooks, run `make pre-commit-install`
10. For setting up data validation tests, run `make setup-setup-data-validation`
11. For **running** the data validation tests, run `make run-data-validation`
12. When you're happy with the result, commit files (including .dvc files) to git.

Project Organization
------------

    β”œβ”€β”€ LICENSE
    β”œβ”€β”€ Makefile           <- Makefile with commands like `make dirs` or `make clean`
    β”œβ”€β”€ README.md          <- The top-level README for developers using this project.
    β”œβ”€β”€ data
    β”‚Β Β  β”œβ”€β”€ processed      <- The final, canonical data sets for modeling.
    β”‚Β Β  └── raw            <- The original, immutable data dump
    β”‚
    β”œβ”€β”€ models             <- Trained and serialized models, model predictions, or model summaries
    β”‚
    β”œβ”€β”€ notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
    β”‚                         the creator's initials, and a short `-` delimited description, e.g.
    β”‚                         `1.0-jqp-initial-data-exploration`.
    β”œβ”€β”€ references         <- Data dictionaries, manuals, and all other explanatory materials.
    β”œβ”€β”€ reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
    β”‚Β Β  └── figures        <- Generated graphics and figures to be used in reporting
    β”‚Β Β  └── metrics.txt    <- Relevant metrics after evaluating the model.
    β”‚Β Β  └── training_metrics.txt    <- Relevant metrics from training the model.
    β”‚
    β”œβ”€β”€ requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
    β”‚                         generated with `pip freeze > requirements.txt`
    β”‚
    β”œβ”€β”€ setup.py           <- makes project pip installable (pip install -e .) so src can be imported
    β”œβ”€β”€ src                <- Source code for use in this project.
    β”‚Β Β  β”œβ”€β”€ __init__.py    <- Makes src a Python module
    β”‚   β”‚
    β”‚Β Β  β”œβ”€β”€ data           <- Scripts to download or generate data
    β”‚Β Β  β”‚Β Β  β”œβ”€β”€ great_expectations  <- Folder containing data integrity check files
    β”‚Β Β  β”‚Β Β  β”œβ”€β”€ make_dataset.py
    β”‚Β Β  β”‚Β Β  └── data_validation.py  <- Script to run data integrity checks
    β”‚   β”‚
    β”‚Β Β  β”œβ”€β”€ models         <- Scripts to train models and then use trained models to make
    β”‚   β”‚   β”‚                 predictions
    β”‚Β Β  β”‚Β Β  β”œβ”€β”€ predict_model.py
    β”‚Β Β  β”‚Β Β  └── train_model.py
    β”‚   β”‚
    β”‚Β Β  └── visualization  <- Scripts to create exploratory and results oriented visualizations
    β”‚Β Β      └── visualize.py
    β”‚
    β”œβ”€β”€ .pre-commit-config.yaml  <- pre-commit hooks file with selected hooks for the projects.
    β”œβ”€β”€ dvc.lock           <- constructs the ML pipeline with defined stages.
    └── dvc.yaml           <- Traing a model on the processed data.


--------

<p><small>Project based on the <a target="_blank" href="https://drivendata.github.io/cookiecutter-data-science/">cookiecutter data science project template</a>. #cookiecutterdatascience</small></p>


---

To create a project like this, just go to https://dagshub.com/repo/create and select the **Cookiecutter DVC** project template.

Made with 🐢 by [DAGsHub](https://dagshub.com/).