File size: 7,085 Bytes
1f5f5a1 9efa5ee 1f5f5a1 9efa5ee 1f5f5a1 9efa5ee 1f5f5a1 9efa5ee 1f5f5a1 9efa5ee 1f5f5a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
---
license: apache-2.0
---
Set the Cookiecutter-MLOps in Hugging Face
==============================================
1 - Create Model repository in Hugging Face (e.g. myHFrepo)
2 - Clone your Hugging face repo to your local directory:
cd /path/to/parent directory of project folder
git clone [email protected]:USERNAME/myHFrepo
For ssh connection check [here](https://huggingface.co./docs/hub/security-git-ssh#add-a-ssh-key-to-your-account)
3 - Create your virtual environment (e.g. jointvenv)
cd myHFrepo
python -m venv jointvenv
source jointvenv/bin/activate
4 - Transfer and set DagsHub's cookiecutter template employing MLOps best practices to your Huggingface repo
git clone https://dagshub.com/DagsHub/Cookiecutter-MLOps.git
4.1 - Delete git files cloned from Cookiecutter-MLOps repo
rm -r /path/to/myHFrepo/Cookiecutter-MLOps/.git
4.2 - Resolve conflicts with .gitattributes (add explanation? e.g. what's in .gitattributes?)
cat /path/to/myHFrepo/Cookiecutter-MLOps/.gitattributes >> /path/to/myHFrepo/.gitattributes
rm /path/to/myHFrepo/Cookiecutter-MLOps/.gitattributes
git add .gitattributes
git commit -m "Concatenate .gitattributes info from DagsHub/Cookiecutter-MLOps"
4.3 - Resolve conflicts with README.md (simplified steps, do we actually need to keep it?)
mv /path/to/myHFrepo/Cookiecutter-MLOps/README.md /path/to/myHFrepo/README.md
git add README.md
git commit -m "Get README info from DagsHub/Cookiecutter-MLOps"
4.4 - Move remaining files from DagsHub/Cookiecutter-MLOps to your Hugging Face repo .gitattributes and README.md
cd /path/to/myHFrepo/Cookiecutter-MLOps
mv * .[^.]* ..
cd /path/to/myHFrepo
rmdir /path/to/myHFrepo/Cookiecutter-MLOps
5 - Add venv folder to.gitignore
echo '' >> .gitignore
echo '#'Virtual Environment >> .gitignore
echo jointvenv/ >> .gitignore
git add .
git commit -m "add remaining DagsHub/Cookiecutter-MLOps repo content"
6 - Run step 2 from DagsHub/Cookiecutter-MLOps
make dirs
7 - Run step 4 from DagsHub/Cookiecutter-MLOps
make requirements
8 - Keep record of your own requirements
mv requirements.txt requirementsCookiecutter-MLOps.txt
git add requirementsCookiecutter-MLOps.txt
git commit -m "external requirements from Cookiecutter-MLOps"
pip freeze > requirements.txt
git add requirements.txt
git commit -m "First report venv requirements"
9 - Push your changes to the remote Hugging face repository
git push origin main
10 - Optional Create Model repository in your Hugging Face organization (e.g. myHFrepo)
git remote add dcc [email protected]:MYORG/mywslHFrepo
git pull dcc main --allow-unrelated-histories
Resolve conflicts in .gitattributes and README.md
git add .
git commit -m "Merge HuggingFace individual and organization repos"
git push dcc main
==============================
Cookiecutter-MLOps
==============================
A cookiecutter template employing MLOps best practices, so you can focus on building machine learning products while
having MLOps best practices applied.
Instructions
------------
1. Clone the repo.
2. Run `make dirs` to create the missing parts of the directory structure described below.
3. *Optional:* Run `make virtualenv` to create a python virtual environment. Skip if using conda or some other env manager.
1. Run `source env/bin/activate` to activate the virtualenv.
4. Run `make requirements` to install required python packages.
5. Put the raw data in `data/raw`.
6. To save the raw data to the DVC cache, run `dvc add data/raw`
7. Edit the code files to your heart's desire.
8. Process your data, train and evaluate your model using `dvc repro` or `make reproduce`
9. To run the pre-commit hooks, run `make pre-commit-install`
10. For setting up data validation tests, run `make setup-setup-data-validation`
11. For **running** the data validation tests, run `make run-data-validation`
12. When you're happy with the result, commit files (including .dvc files) to git.
Project Organization
------------
βββ LICENSE
βββ Makefile <- Makefile with commands like `make dirs` or `make clean`
βββ README.md <- The top-level README for developers using this project.
βββ data
βΒ Β βββ processed <- The final, canonical data sets for modeling.
βΒ Β βββ raw <- The original, immutable data dump
β
βββ models <- Trained and serialized models, model predictions, or model summaries
β
βββ notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
β the creator's initials, and a short `-` delimited description, e.g.
β `1.0-jqp-initial-data-exploration`.
βββ references <- Data dictionaries, manuals, and all other explanatory materials.
βββ reports <- Generated analysis as HTML, PDF, LaTeX, etc.
βΒ Β βββ figures <- Generated graphics and figures to be used in reporting
βΒ Β βββ metrics.txt <- Relevant metrics after evaluating the model.
βΒ Β βββ training_metrics.txt <- Relevant metrics from training the model.
β
βββ requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
β generated with `pip freeze > requirements.txt`
β
βββ setup.py <- makes project pip installable (pip install -e .) so src can be imported
βββ src <- Source code for use in this project.
βΒ Β βββ __init__.py <- Makes src a Python module
β β
βΒ Β βββ data <- Scripts to download or generate data
βΒ Β βΒ Β βββ great_expectations <- Folder containing data integrity check files
βΒ Β βΒ Β βββ make_dataset.py
βΒ Β βΒ Β βββ data_validation.py <- Script to run data integrity checks
β β
βΒ Β βββ models <- Scripts to train models and then use trained models to make
β β β predictions
βΒ Β βΒ Β βββ predict_model.py
βΒ Β βΒ Β βββ train_model.py
β β
βΒ Β βββ visualization <- Scripts to create exploratory and results oriented visualizations
βΒ Β βββ visualize.py
β
βββ .pre-commit-config.yaml <- pre-commit hooks file with selected hooks for the projects.
βββ dvc.lock <- constructs the ML pipeline with defined stages.
βββ dvc.yaml <- Traing a model on the processed data.
--------
<p><small>Project based on the <a target="_blank" href="https://drivendata.github.io/cookiecutter-data-science/">cookiecutter data science project template</a>. #cookiecutterdatascience</small></p>
---
To create a project like this, just go to https://dagshub.com/repo/create and select the **Cookiecutter DVC** project template.
Made with πΆ by [DAGsHub](https://dagshub.com/).
|