ShawLiu commited on
Commit
d5d5dbe
·
1 Parent(s): bc6f13b
added_tokens.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<eop>": 151334,
3
+ "<sop>": 151333,
4
+ "<|assistant|>": 151337,
5
+ "<|begin_of_image|>": 151339,
6
+ "<|begin_of_video|>": 151341,
7
+ "<|end_of_image|>": 151340,
8
+ "<|end_of_video|>": 151342,
9
+ "<|endoftext|>": 151329,
10
+ "<|eot_id|>": 151343,
11
+ "<|observation|>": 151338,
12
+ "<|system|>": 151335,
13
+ "<|user|>": 151336,
14
+ "[MASK]": 151330,
15
+ "[gMASK]": 151331,
16
+ "[sMASK]": 151332
17
+ }
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/rl/web_policy/glm-4-9b/web_policy_sft_lite_2",
3
+ "add_bias_linear": false,
4
+ "add_qkv_bias": true,
5
+ "apply_query_key_layer_scaling": true,
6
+ "apply_residual_connection_post_layernorm": false,
7
+ "architectures": [
8
+ "ChatGLMForConditionalGeneration"
9
+ ],
10
+ "attention_dropout": 0.0,
11
+ "attention_softmax_in_fp32": true,
12
+ "auto_map": {
13
+ "AutoConfig": "configuration_chatglm.ChatGLMConfig",
14
+ "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
15
+ "AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
16
+ "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
17
+ "AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification"
18
+ },
19
+ "bias_dropout_fusion": true,
20
+ "classifier_dropout": null,
21
+ "eos_token_id": [
22
+ 151329,
23
+ 151336,
24
+ 151338
25
+ ],
26
+ "ffn_hidden_size": 13696,
27
+ "fp32_residual_connection": false,
28
+ "hidden_dropout": 0.0,
29
+ "hidden_size": 4096,
30
+ "kv_channels": 128,
31
+ "layernorm_epsilon": 1.5625e-07,
32
+ "model_type": "chatglm",
33
+ "multi_query_attention": true,
34
+ "multi_query_group_num": 2,
35
+ "num_attention_heads": 32,
36
+ "num_layers": 40,
37
+ "original_rope": true,
38
+ "pad_token_id": 151329,
39
+ "padded_vocab_size": 151552,
40
+ "post_layer_norm": true,
41
+ "rmsnorm": true,
42
+ "rope_ratio": 1,
43
+ "seq_length": 16384,
44
+ "tie_word_embeddings": false,
45
+ "torch_dtype": "bfloat16",
46
+ "transformers_version": "4.43.2",
47
+ "use_cache": false,
48
+ "vocab_size": 151552
49
+ }
configuration_chatglm.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class ChatGLMConfig(PretrainedConfig):
5
+ model_type = "chatglm"
6
+
7
+ def __init__(
8
+ self,
9
+ num_layers=28,
10
+ padded_vocab_size=65024,
11
+ hidden_size=4096,
12
+ ffn_hidden_size=13696,
13
+ kv_channels=128,
14
+ num_attention_heads=32,
15
+ seq_length=2048,
16
+ hidden_dropout=0.0,
17
+ classifier_dropout=None,
18
+ attention_dropout=0.0,
19
+ layernorm_epsilon=1e-5,
20
+ rmsnorm=True,
21
+ apply_residual_connection_post_layernorm=False,
22
+ post_layer_norm=True,
23
+ add_bias_linear=False,
24
+ add_qkv_bias=False,
25
+ bias_dropout_fusion=True,
26
+ multi_query_attention=False,
27
+ multi_query_group_num=1,
28
+ rope_ratio=1,
29
+ apply_query_key_layer_scaling=True,
30
+ attention_softmax_in_fp32=True,
31
+ fp32_residual_connection=False,
32
+ **kwargs
33
+ ):
34
+ self.num_layers = num_layers
35
+ self.vocab_size = padded_vocab_size
36
+ self.padded_vocab_size = padded_vocab_size
37
+ self.hidden_size = hidden_size
38
+ self.ffn_hidden_size = ffn_hidden_size
39
+ self.kv_channels = kv_channels
40
+ self.num_attention_heads = num_attention_heads
41
+ self.seq_length = seq_length
42
+ self.hidden_dropout = hidden_dropout
43
+ self.classifier_dropout = classifier_dropout
44
+ self.attention_dropout = attention_dropout
45
+ self.layernorm_epsilon = layernorm_epsilon
46
+ self.rmsnorm = rmsnorm
47
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
48
+ self.post_layer_norm = post_layer_norm
49
+ self.add_bias_linear = add_bias_linear
50
+ self.add_qkv_bias = add_qkv_bias
51
+ self.bias_dropout_fusion = bias_dropout_fusion
52
+ self.multi_query_attention = multi_query_attention
53
+ self.multi_query_group_num = multi_query_group_num
54
+ self.rope_ratio = rope_ratio
55
+ self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
56
+ self.attention_softmax_in_fp32 = attention_softmax_in_fp32
57
+ self.fp32_residual_connection = fp32_residual_connection
58
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_sample": true,
3
+ "eos_token_id": [
4
+ 151329,
5
+ 151336,
6
+ 151338
7
+ ],
8
+ "max_length": 16384,
9
+ "pad_token_id": 151329,
10
+ "temperature": 0,
11
+ "transformers_version": "4.43.2"
12
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:952155eb729068795a07a2f7c3d2156afca88c8f71fa3cd478fcf9e7f984f84e
3
+ size 4984147224
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2748120a606d5c337c745c28d9123a1382f93347013188dbbede5e69b8c7a30
3
+ size 4895071360
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0893daaca527fa30276909c3bd07d59e6777547ac0ac1d8f33f2a0f91787aae6
3
+ size 4895071384
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afb3b0930a5f6dd1c1994844d714f1c8afb6a6b5f6cbe80225e483463e0901e4
3
+ size 4025651256
model.safetensors.index.json ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 18799902784
4
+ },
5
+ "weight_map": {
6
+ "transformer.embedding.word_embeddings.weight": "model-00001-of-00004.safetensors",
7
+ "transformer.encoder.final_layernorm.weight": "model-00004-of-00004.safetensors",
8
+ "transformer.encoder.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "transformer.encoder.layers.0.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
10
+ "transformer.encoder.layers.0.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
11
+ "transformer.encoder.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
12
+ "transformer.encoder.layers.0.self_attention.dense.weight": "model-00001-of-00004.safetensors",
13
+ "transformer.encoder.layers.0.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
14
+ "transformer.encoder.layers.0.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
15
+ "transformer.encoder.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
16
+ "transformer.encoder.layers.1.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
17
+ "transformer.encoder.layers.1.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
18
+ "transformer.encoder.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
19
+ "transformer.encoder.layers.1.self_attention.dense.weight": "model-00001-of-00004.safetensors",
20
+ "transformer.encoder.layers.1.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
21
+ "transformer.encoder.layers.1.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
22
+ "transformer.encoder.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
23
+ "transformer.encoder.layers.10.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
24
+ "transformer.encoder.layers.10.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
25
+ "transformer.encoder.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
26
+ "transformer.encoder.layers.10.self_attention.dense.weight": "model-00002-of-00004.safetensors",
27
+ "transformer.encoder.layers.10.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
28
+ "transformer.encoder.layers.10.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
29
+ "transformer.encoder.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
30
+ "transformer.encoder.layers.11.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
31
+ "transformer.encoder.layers.11.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
32
+ "transformer.encoder.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "transformer.encoder.layers.11.self_attention.dense.weight": "model-00002-of-00004.safetensors",
34
+ "transformer.encoder.layers.11.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
35
+ "transformer.encoder.layers.11.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
36
+ "transformer.encoder.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "transformer.encoder.layers.12.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
38
+ "transformer.encoder.layers.12.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
39
+ "transformer.encoder.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "transformer.encoder.layers.12.self_attention.dense.weight": "model-00002-of-00004.safetensors",
41
+ "transformer.encoder.layers.12.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
42
+ "transformer.encoder.layers.12.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
43
+ "transformer.encoder.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
44
+ "transformer.encoder.layers.13.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
45
+ "transformer.encoder.layers.13.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
46
+ "transformer.encoder.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
47
+ "transformer.encoder.layers.13.self_attention.dense.weight": "model-00002-of-00004.safetensors",
48
+ "transformer.encoder.layers.13.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
49
+ "transformer.encoder.layers.13.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
50
+ "transformer.encoder.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
51
+ "transformer.encoder.layers.14.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
52
+ "transformer.encoder.layers.14.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
53
+ "transformer.encoder.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "transformer.encoder.layers.14.self_attention.dense.weight": "model-00002-of-00004.safetensors",
55
+ "transformer.encoder.layers.14.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
56
+ "transformer.encoder.layers.14.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
57
+ "transformer.encoder.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "transformer.encoder.layers.15.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
59
+ "transformer.encoder.layers.15.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
60
+ "transformer.encoder.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "transformer.encoder.layers.15.self_attention.dense.weight": "model-00002-of-00004.safetensors",
62
+ "transformer.encoder.layers.15.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
63
+ "transformer.encoder.layers.15.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
64
+ "transformer.encoder.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
65
+ "transformer.encoder.layers.16.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
66
+ "transformer.encoder.layers.16.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
67
+ "transformer.encoder.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
68
+ "transformer.encoder.layers.16.self_attention.dense.weight": "model-00002-of-00004.safetensors",
69
+ "transformer.encoder.layers.16.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
70
+ "transformer.encoder.layers.16.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
71
+ "transformer.encoder.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "transformer.encoder.layers.17.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
73
+ "transformer.encoder.layers.17.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
74
+ "transformer.encoder.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
75
+ "transformer.encoder.layers.17.self_attention.dense.weight": "model-00002-of-00004.safetensors",
76
+ "transformer.encoder.layers.17.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
77
+ "transformer.encoder.layers.17.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
78
+ "transformer.encoder.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
79
+ "transformer.encoder.layers.18.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
80
+ "transformer.encoder.layers.18.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
81
+ "transformer.encoder.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
82
+ "transformer.encoder.layers.18.self_attention.dense.weight": "model-00002-of-00004.safetensors",
83
+ "transformer.encoder.layers.18.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
84
+ "transformer.encoder.layers.18.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
85
+ "transformer.encoder.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "transformer.encoder.layers.19.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
87
+ "transformer.encoder.layers.19.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
88
+ "transformer.encoder.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
89
+ "transformer.encoder.layers.19.self_attention.dense.weight": "model-00002-of-00004.safetensors",
90
+ "transformer.encoder.layers.19.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
91
+ "transformer.encoder.layers.19.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
92
+ "transformer.encoder.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
93
+ "transformer.encoder.layers.2.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
94
+ "transformer.encoder.layers.2.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
95
+ "transformer.encoder.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
96
+ "transformer.encoder.layers.2.self_attention.dense.weight": "model-00001-of-00004.safetensors",
97
+ "transformer.encoder.layers.2.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
98
+ "transformer.encoder.layers.2.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
99
+ "transformer.encoder.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
100
+ "transformer.encoder.layers.20.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
101
+ "transformer.encoder.layers.20.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
102
+ "transformer.encoder.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "transformer.encoder.layers.20.self_attention.dense.weight": "model-00002-of-00004.safetensors",
104
+ "transformer.encoder.layers.20.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
105
+ "transformer.encoder.layers.20.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
106
+ "transformer.encoder.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
107
+ "transformer.encoder.layers.21.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
108
+ "transformer.encoder.layers.21.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
109
+ "transformer.encoder.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
110
+ "transformer.encoder.layers.21.self_attention.dense.weight": "model-00002-of-00004.safetensors",
111
+ "transformer.encoder.layers.21.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
112
+ "transformer.encoder.layers.21.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
113
+ "transformer.encoder.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
114
+ "transformer.encoder.layers.22.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
115
+ "transformer.encoder.layers.22.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
116
+ "transformer.encoder.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "transformer.encoder.layers.22.self_attention.dense.weight": "model-00003-of-00004.safetensors",
118
+ "transformer.encoder.layers.22.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
119
+ "transformer.encoder.layers.22.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
120
+ "transformer.encoder.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "transformer.encoder.layers.23.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
122
+ "transformer.encoder.layers.23.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
123
+ "transformer.encoder.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
124
+ "transformer.encoder.layers.23.self_attention.dense.weight": "model-00003-of-00004.safetensors",
125
+ "transformer.encoder.layers.23.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
126
+ "transformer.encoder.layers.23.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
127
+ "transformer.encoder.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
128
+ "transformer.encoder.layers.24.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
129
+ "transformer.encoder.layers.24.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
130
+ "transformer.encoder.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
131
+ "transformer.encoder.layers.24.self_attention.dense.weight": "model-00003-of-00004.safetensors",
132
+ "transformer.encoder.layers.24.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
133
+ "transformer.encoder.layers.24.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
134
+ "transformer.encoder.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "transformer.encoder.layers.25.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
136
+ "transformer.encoder.layers.25.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
137
+ "transformer.encoder.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
138
+ "transformer.encoder.layers.25.self_attention.dense.weight": "model-00003-of-00004.safetensors",
139
+ "transformer.encoder.layers.25.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
140
+ "transformer.encoder.layers.25.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
141
+ "transformer.encoder.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
142
+ "transformer.encoder.layers.26.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
143
+ "transformer.encoder.layers.26.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
144
+ "transformer.encoder.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "transformer.encoder.layers.26.self_attention.dense.weight": "model-00003-of-00004.safetensors",
146
+ "transformer.encoder.layers.26.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
147
+ "transformer.encoder.layers.26.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
148
+ "transformer.encoder.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
149
+ "transformer.encoder.layers.27.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
150
+ "transformer.encoder.layers.27.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
151
+ "transformer.encoder.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
152
+ "transformer.encoder.layers.27.self_attention.dense.weight": "model-00003-of-00004.safetensors",
153
+ "transformer.encoder.layers.27.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
154
+ "transformer.encoder.layers.27.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
155
+ "transformer.encoder.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
156
+ "transformer.encoder.layers.28.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
157
+ "transformer.encoder.layers.28.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
158
+ "transformer.encoder.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
159
+ "transformer.encoder.layers.28.self_attention.dense.weight": "model-00003-of-00004.safetensors",
160
+ "transformer.encoder.layers.28.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
161
+ "transformer.encoder.layers.28.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
162
+ "transformer.encoder.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
163
+ "transformer.encoder.layers.29.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
164
+ "transformer.encoder.layers.29.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
165
+ "transformer.encoder.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "transformer.encoder.layers.29.self_attention.dense.weight": "model-00003-of-00004.safetensors",
167
+ "transformer.encoder.layers.29.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
168
+ "transformer.encoder.layers.29.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
169
+ "transformer.encoder.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
170
+ "transformer.encoder.layers.3.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
171
+ "transformer.encoder.layers.3.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
172
+ "transformer.encoder.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
173
+ "transformer.encoder.layers.3.self_attention.dense.weight": "model-00001-of-00004.safetensors",
174
+ "transformer.encoder.layers.3.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
175
+ "transformer.encoder.layers.3.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
176
+ "transformer.encoder.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "transformer.encoder.layers.30.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
178
+ "transformer.encoder.layers.30.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
179
+ "transformer.encoder.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "transformer.encoder.layers.30.self_attention.dense.weight": "model-00003-of-00004.safetensors",
181
+ "transformer.encoder.layers.30.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
182
+ "transformer.encoder.layers.30.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
183
+ "transformer.encoder.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "transformer.encoder.layers.31.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
185
+ "transformer.encoder.layers.31.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
186
+ "transformer.encoder.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
187
+ "transformer.encoder.layers.31.self_attention.dense.weight": "model-00003-of-00004.safetensors",
188
+ "transformer.encoder.layers.31.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
189
+ "transformer.encoder.layers.31.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
190
+ "transformer.encoder.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
191
+ "transformer.encoder.layers.32.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
192
+ "transformer.encoder.layers.32.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
193
+ "transformer.encoder.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
194
+ "transformer.encoder.layers.32.self_attention.dense.weight": "model-00003-of-00004.safetensors",
195
+ "transformer.encoder.layers.32.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
196
+ "transformer.encoder.layers.32.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
197
+ "transformer.encoder.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "transformer.encoder.layers.33.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
199
+ "transformer.encoder.layers.33.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
200
+ "transformer.encoder.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "transformer.encoder.layers.33.self_attention.dense.weight": "model-00003-of-00004.safetensors",
202
+ "transformer.encoder.layers.33.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
203
+ "transformer.encoder.layers.33.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
204
+ "transformer.encoder.layers.34.input_layernorm.weight": "model-00004-of-00004.safetensors",
205
+ "transformer.encoder.layers.34.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
206
+ "transformer.encoder.layers.34.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
207
+ "transformer.encoder.layers.34.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
208
+ "transformer.encoder.layers.34.self_attention.dense.weight": "model-00004-of-00004.safetensors",
209
+ "transformer.encoder.layers.34.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
210
+ "transformer.encoder.layers.34.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
211
+ "transformer.encoder.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
212
+ "transformer.encoder.layers.35.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
213
+ "transformer.encoder.layers.35.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
214
+ "transformer.encoder.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
215
+ "transformer.encoder.layers.35.self_attention.dense.weight": "model-00004-of-00004.safetensors",
216
+ "transformer.encoder.layers.35.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
217
+ "transformer.encoder.layers.35.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
218
+ "transformer.encoder.layers.36.input_layernorm.weight": "model-00004-of-00004.safetensors",
219
+ "transformer.encoder.layers.36.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
220
+ "transformer.encoder.layers.36.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
221
+ "transformer.encoder.layers.36.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
222
+ "transformer.encoder.layers.36.self_attention.dense.weight": "model-00004-of-00004.safetensors",
223
+ "transformer.encoder.layers.36.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
224
+ "transformer.encoder.layers.36.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
225
+ "transformer.encoder.layers.37.input_layernorm.weight": "model-00004-of-00004.safetensors",
226
+ "transformer.encoder.layers.37.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
227
+ "transformer.encoder.layers.37.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
228
+ "transformer.encoder.layers.37.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
229
+ "transformer.encoder.layers.37.self_attention.dense.weight": "model-00004-of-00004.safetensors",
230
+ "transformer.encoder.layers.37.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
231
+ "transformer.encoder.layers.37.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
232
+ "transformer.encoder.layers.38.input_layernorm.weight": "model-00004-of-00004.safetensors",
233
+ "transformer.encoder.layers.38.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
234
+ "transformer.encoder.layers.38.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
235
+ "transformer.encoder.layers.38.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
236
+ "transformer.encoder.layers.38.self_attention.dense.weight": "model-00004-of-00004.safetensors",
237
+ "transformer.encoder.layers.38.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
238
+ "transformer.encoder.layers.38.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
239
+ "transformer.encoder.layers.39.input_layernorm.weight": "model-00004-of-00004.safetensors",
240
+ "transformer.encoder.layers.39.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
241
+ "transformer.encoder.layers.39.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
242
+ "transformer.encoder.layers.39.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
243
+ "transformer.encoder.layers.39.self_attention.dense.weight": "model-00004-of-00004.safetensors",
244
+ "transformer.encoder.layers.39.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
245
+ "transformer.encoder.layers.39.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
246
+ "transformer.encoder.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "transformer.encoder.layers.4.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
248
+ "transformer.encoder.layers.4.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
249
+ "transformer.encoder.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
250
+ "transformer.encoder.layers.4.self_attention.dense.weight": "model-00001-of-00004.safetensors",
251
+ "transformer.encoder.layers.4.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
252
+ "transformer.encoder.layers.4.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
253
+ "transformer.encoder.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
254
+ "transformer.encoder.layers.5.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
255
+ "transformer.encoder.layers.5.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
256
+ "transformer.encoder.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
257
+ "transformer.encoder.layers.5.self_attention.dense.weight": "model-00001-of-00004.safetensors",
258
+ "transformer.encoder.layers.5.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
259
+ "transformer.encoder.layers.5.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
260
+ "transformer.encoder.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "transformer.encoder.layers.6.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
262
+ "transformer.encoder.layers.6.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
263
+ "transformer.encoder.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
264
+ "transformer.encoder.layers.6.self_attention.dense.weight": "model-00001-of-00004.safetensors",
265
+ "transformer.encoder.layers.6.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
266
+ "transformer.encoder.layers.6.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
267
+ "transformer.encoder.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
268
+ "transformer.encoder.layers.7.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
269
+ "transformer.encoder.layers.7.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
270
+ "transformer.encoder.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
271
+ "transformer.encoder.layers.7.self_attention.dense.weight": "model-00001-of-00004.safetensors",
272
+ "transformer.encoder.layers.7.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
273
+ "transformer.encoder.layers.7.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
274
+ "transformer.encoder.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
275
+ "transformer.encoder.layers.8.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
276
+ "transformer.encoder.layers.8.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
277
+ "transformer.encoder.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
278
+ "transformer.encoder.layers.8.self_attention.dense.weight": "model-00001-of-00004.safetensors",
279
+ "transformer.encoder.layers.8.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
280
+ "transformer.encoder.layers.8.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
281
+ "transformer.encoder.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
282
+ "transformer.encoder.layers.9.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
283
+ "transformer.encoder.layers.9.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
284
+ "transformer.encoder.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "transformer.encoder.layers.9.self_attention.dense.weight": "model-00001-of-00004.safetensors",
286
+ "transformer.encoder.layers.9.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
287
+ "transformer.encoder.layers.9.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
288
+ "transformer.output_layer.weight": "model-00004-of-00004.safetensors",
289
+ "transformer.rotary_pos_emb.inv_freq": "model-00001-of-00004.safetensors"
290
+ }
291
+ }
modeling_chatglm.py ADDED
@@ -0,0 +1,1344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch ChatGLM model. """
2
+ import json
3
+ import math
4
+ import copy
5
+ import warnings
6
+ import re
7
+ import sys
8
+
9
+ import torch
10
+ import torch.utils.checkpoint
11
+ import torch.nn.functional as F
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
14
+ from torch.nn.utils import skip_init
15
+ from typing import Optional, Tuple, Union, List, Callable, Dict, Any
16
+ from copy import deepcopy
17
+
18
+ from transformers.modeling_outputs import (
19
+ BaseModelOutputWithPast,
20
+ CausalLMOutputWithPast,
21
+ SequenceClassifierOutputWithPast,
22
+ )
23
+ from transformers.modeling_utils import PreTrainedModel
24
+ from transformers.utils import logging, is_torch_npu_available
25
+ from transformers.generation.logits_process import LogitsProcessor
26
+ from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
27
+
28
+ from .configuration_chatglm import ChatGLMConfig
29
+
30
+ try:
31
+ from transformers.utils import is_flash_attn_greater_or_equal_2_10, is_flash_attn_2_available
32
+ if is_flash_attn_2_available():
33
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
34
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
35
+ except:
36
+ pass
37
+
38
+
39
+ # flags required to enable jit fusion kernels
40
+
41
+ if sys.platform != 'darwin' and not is_torch_npu_available():
42
+ torch._C._jit_set_profiling_mode(False)
43
+ torch._C._jit_set_profiling_executor(False)
44
+ torch._C._jit_override_can_fuse_on_cpu(True)
45
+ torch._C._jit_override_can_fuse_on_gpu(True)
46
+
47
+ logger = logging.get_logger(__name__)
48
+
49
+ _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
50
+ _CONFIG_FOR_DOC = "ChatGLMConfig"
51
+
52
+
53
+ def default_init(cls, *args, **kwargs):
54
+ return cls(*args, **kwargs)
55
+
56
+
57
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
58
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
59
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
60
+ scores.zero_()
61
+ scores[..., 198] = 5e4
62
+ return scores
63
+
64
+
65
+ def split_tensor_along_last_dim(
66
+ tensor: torch.Tensor,
67
+ num_partitions: int,
68
+ contiguous_split_chunks: bool = False,
69
+ ) -> List[torch.Tensor]:
70
+ """Split a tensor along its last dimension.
71
+
72
+ Arguments:
73
+ tensor: input tensor.
74
+ num_partitions: number of partitions to split the tensor
75
+ contiguous_split_chunks: If True, make each chunk contiguous
76
+ in memory.
77
+
78
+ Returns:
79
+ A list of Tensors
80
+ """
81
+ # Get the size and dimension.
82
+ last_dim = tensor.dim() - 1
83
+ last_dim_size = tensor.size()[last_dim] // num_partitions
84
+ # Split.
85
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
86
+ # Note: torch.split does not create contiguous tensors by default.
87
+ if contiguous_split_chunks:
88
+ return tuple(chunk.contiguous() for chunk in tensor_list)
89
+
90
+ return tensor_list
91
+
92
+
93
+ class RotaryEmbedding(nn.Module):
94
+ def __init__(self, dim, rope_ratio=1, original_impl=False, device=None, dtype=None):
95
+ super().__init__()
96
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
97
+ self.register_buffer("inv_freq", inv_freq)
98
+ self.dim = dim
99
+ self.original_impl = original_impl
100
+ self.rope_ratio = rope_ratio
101
+
102
+ def forward_impl(
103
+ self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
104
+ ):
105
+ """Enhanced Transformer with Rotary Position Embedding.
106
+
107
+ Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
108
+ transformers/rope/__init__.py. MIT License:
109
+ https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
110
+ """
111
+ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
112
+ base = base * self.rope_ratio
113
+ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
114
+
115
+ # Create position indexes `[0, 1, ..., seq_len - 1]`
116
+ seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
117
+
118
+ # Calculate the product of position index and $\theta_i$
119
+ idx_theta = torch.outer(seq_idx, theta).float()
120
+
121
+ cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
122
+
123
+ # this is to mimic the behaviour of complex32, else we will get different results
124
+ if dtype in (torch.float16, torch.bfloat16, torch.int8):
125
+ cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
126
+ return cache
127
+
128
+ def forward(self, max_seq_len, offset=0):
129
+ return self.forward_impl(
130
+ max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
131
+ )
132
+
133
+
134
+ @torch.jit.script
135
+ def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
136
+ # x: [b, np, sq, hn]
137
+ b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3)
138
+ rot_dim = rope_cache.shape[-2] * 2
139
+ x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
140
+ # truncate to support variable sizes
141
+ rope_cache = rope_cache[:, :sq]
142
+ xshaped = x.reshape(b, np, sq, rot_dim // 2, 2)
143
+ rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2)
144
+ x_out2 = torch.stack(
145
+ [
146
+ xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
147
+ xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
148
+ ],
149
+ -1,
150
+ )
151
+ x_out2 = x_out2.flatten(3)
152
+ return torch.cat((x_out2, x_pass), dim=-1)
153
+
154
+
155
+ class RMSNorm(torch.nn.Module):
156
+ def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
157
+ super().__init__()
158
+ self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
159
+ self.eps = eps
160
+
161
+ def forward(self, hidden_states: torch.Tensor):
162
+ input_dtype = hidden_states.dtype
163
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
164
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
165
+
166
+ return (self.weight * hidden_states).to(input_dtype)
167
+
168
+
169
+ class CoreAttention(torch.nn.Module):
170
+ def __init__(self, config: ChatGLMConfig, layer_number):
171
+ super(CoreAttention, self).__init__()
172
+ self.config = config
173
+ self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
174
+ self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
175
+ if self.apply_query_key_layer_scaling:
176
+ self.attention_softmax_in_fp32 = True
177
+ self.layer_number = max(1, layer_number)
178
+ self.is_causal = True
179
+
180
+ projection_size = config.kv_channels * config.num_attention_heads
181
+
182
+ # Per attention head and per partition values.
183
+ self.hidden_size_per_partition = projection_size
184
+ self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
185
+ self.num_attention_heads_per_partition = config.num_attention_heads
186
+
187
+ coeff = None
188
+ self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
189
+ if self.apply_query_key_layer_scaling:
190
+ coeff = self.layer_number
191
+ self.norm_factor *= coeff
192
+ self.coeff = coeff
193
+
194
+ self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
195
+
196
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
197
+ # [b, np, sq, sk]
198
+ output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
199
+
200
+ # [b, np, sq, hn] -> [b * np, sq, hn]
201
+ query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1)
202
+ # [b, np, sk, hn] -> [b * np, sk, hn]
203
+ key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
204
+
205
+ # preallocting input tensor: [b * np, sq, sk]
206
+ matmul_input_buffer = torch.empty(
207
+ output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
208
+ device=query_layer.device
209
+ )
210
+
211
+ # Raw attention scores. [b * np, sq, sk]
212
+ matmul_result = torch.baddbmm(
213
+ matmul_input_buffer,
214
+ query_layer, # [b * np, sq, hn]
215
+ key_layer.transpose(1, 2), # [b * np, hn, sk]
216
+ beta=0.0,
217
+ alpha=(1.0 / self.norm_factor),
218
+ )
219
+
220
+ # change view to [b, np, sq, sk]
221
+ attention_scores = matmul_result.view(*output_size)
222
+
223
+ # ===========================
224
+ # Attention probs and dropout
225
+ # ===========================
226
+
227
+ # attention scores and attention mask [b, np, sq, sk]
228
+ if self.attention_softmax_in_fp32:
229
+ attention_scores = attention_scores.float()
230
+ if self.coeff is not None:
231
+ attention_scores = attention_scores * self.coeff
232
+ if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
233
+ attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
234
+ device=attention_scores.device, dtype=torch.bool)
235
+ attention_mask.tril_()
236
+ attention_mask = ~attention_mask
237
+ if attention_mask is not None:
238
+ attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
239
+ attention_probs = F.softmax(attention_scores, dim=-1)
240
+ attention_probs = attention_probs.type_as(value_layer)
241
+
242
+ # This is actually dropping out entire tokens to attend to, which might
243
+ # seem a bit unusual, but is taken from the original Transformer paper.
244
+ attention_probs = self.attention_dropout(attention_probs)
245
+
246
+ # query layer shape: [b * np, sq, hn]
247
+ # value layer shape: [b, np, sk, hn]
248
+ # attention shape: [b, np, sq, sk]
249
+ # context layer shape: [b, np, sq, hn]
250
+ output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
251
+ # change view [b * np, sk, hn]
252
+ value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
253
+ # change view [b * np, sq, sk]
254
+ attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
255
+ # matmul: [b * np, sq, hn]
256
+ context_layer = torch.bmm(attention_probs, value_layer)
257
+ # change view [b, np, sq, hn]
258
+ context_layer = context_layer.view(*output_size)
259
+ # [b, np, sq, hn] --> [b, sq, np, hn]
260
+ context_layer = context_layer.transpose(1, 2).contiguous()
261
+ # [b, sq, np, hn] --> [b, sq, hp]
262
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
263
+ context_layer = context_layer.reshape(*new_context_layer_shape)
264
+
265
+ return context_layer
266
+
267
+
268
+ class SdpaAttention(CoreAttention):
269
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
270
+ if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
271
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
272
+ is_causal=True,
273
+ dropout_p=self.config.attention_dropout if self.training else 0.0)
274
+ else:
275
+ if attention_mask is not None:
276
+ attention_mask = ~attention_mask
277
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
278
+ attention_mask,
279
+ dropout_p=self.config.attention_dropout if self.training else 0.0)
280
+ context_layer = context_layer.transpose(1, 2).contiguous()
281
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
282
+ context_layer = context_layer.reshape(*new_context_layer_shape)
283
+ return context_layer
284
+
285
+
286
+ def _get_unpad_data(attention_mask):
287
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
288
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
289
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
290
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
291
+ return (
292
+ indices,
293
+ cu_seqlens,
294
+ max_seqlen_in_batch,
295
+ )
296
+
297
+
298
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2
299
+ class FlashAttention2(CoreAttention):
300
+ def __init__(self, *args, **kwargs):
301
+ super().__init__(*args, **kwargs)
302
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
303
+
304
+ def forward(self, query_states, key_states, value_states, attention_mask):
305
+ query_states = query_states.transpose(1, 2)
306
+ key_states = key_states.transpose(1, 2)
307
+ value_states = value_states.transpose(1, 2)
308
+ batch_size, query_length = query_states.shape[:2]
309
+ if not self._flash_attn_uses_top_left_mask:
310
+ causal = self.is_causal
311
+ else:
312
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
313
+ causal = self.is_causal and query_length != 1
314
+ dropout = self.config.attention_dropout if self.training else 0.0
315
+ # Contains at least one padding token in the sequence
316
+ if attention_mask is not None:
317
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
318
+ query_states, key_states, value_states, attention_mask, query_length
319
+ )
320
+
321
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
322
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
323
+
324
+ attn_output_unpad = flash_attn_varlen_func(
325
+ query_states,
326
+ key_states,
327
+ value_states,
328
+ cu_seqlens_q=cu_seqlens_q,
329
+ cu_seqlens_k=cu_seqlens_k,
330
+ max_seqlen_q=max_seqlen_in_batch_q,
331
+ max_seqlen_k=max_seqlen_in_batch_k,
332
+ dropout_p=dropout,
333
+ softmax_scale=None,
334
+ causal=causal,
335
+ )
336
+
337
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
338
+ else:
339
+ attn_output = flash_attn_func(
340
+ query_states, key_states, value_states, dropout, softmax_scale=None, causal=causal
341
+ )
342
+ attn_output = attn_output.reshape(batch_size, query_length, self.hidden_size_per_partition).contiguous()
343
+ return attn_output
344
+
345
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
346
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
347
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
348
+
349
+ key_layer = index_first_axis(
350
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
351
+ )
352
+ value_layer = index_first_axis(
353
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
354
+ )
355
+ if query_length == kv_seq_len:
356
+ query_layer = index_first_axis(
357
+ query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads_per_partition, head_dim), indices_k
358
+ )
359
+ cu_seqlens_q = cu_seqlens_k
360
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
361
+ indices_q = indices_k
362
+ elif query_length == 1:
363
+ max_seqlen_in_batch_q = 1
364
+ cu_seqlens_q = torch.arange(
365
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
366
+ ) # There is a memcpy here, that is very bad.
367
+ indices_q = cu_seqlens_q[:-1]
368
+ query_layer = query_layer.squeeze(1)
369
+ else:
370
+ # The -q_len: slice assumes left padding.
371
+ attention_mask = attention_mask[:, -query_length:]
372
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
373
+
374
+ return (
375
+ query_layer,
376
+ key_layer,
377
+ value_layer,
378
+ indices_q,
379
+ (cu_seqlens_q, cu_seqlens_k),
380
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
381
+ )
382
+
383
+
384
+ CORE_ATTENTION_CLASSES = {
385
+ "eager": CoreAttention,
386
+ "sdpa": SdpaAttention,
387
+ "flash_attention_2": FlashAttention2
388
+ }
389
+
390
+
391
+ class SelfAttention(torch.nn.Module):
392
+ """Parallel self-attention layer abstract class.
393
+
394
+ Self-attention layer takes input with size [s, b, h]
395
+ and returns output of the same size.
396
+ """
397
+
398
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
399
+ super(SelfAttention, self).__init__()
400
+ self.layer_number = max(1, layer_number)
401
+
402
+ self.projection_size = config.kv_channels * config.num_attention_heads
403
+
404
+ # Per attention head and per partition values.
405
+ self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
406
+ self.num_attention_heads_per_partition = config.num_attention_heads
407
+
408
+ self.multi_query_attention = config.multi_query_attention
409
+ self.qkv_hidden_size = 3 * self.projection_size
410
+ if self.multi_query_attention:
411
+ self.num_multi_query_groups_per_partition = config.multi_query_group_num
412
+ self.qkv_hidden_size = (
413
+ self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
414
+ )
415
+ self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
416
+ bias=config.add_bias_linear or config.add_qkv_bias,
417
+ device=device, **_config_to_kwargs(config)
418
+ )
419
+
420
+ self.core_attention = CORE_ATTENTION_CLASSES[config._attn_implementation](config, self.layer_number)
421
+
422
+ # Output.
423
+ self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
424
+ device=device, **_config_to_kwargs(config)
425
+ )
426
+
427
+ def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
428
+ if self.multi_query_attention:
429
+ num_attention_heads = self.num_multi_query_groups_per_partition
430
+ else:
431
+ num_attention_heads = self.num_attention_heads_per_partition
432
+ return torch.empty(
433
+ inference_max_sequence_len,
434
+ batch_size,
435
+ num_attention_heads,
436
+ self.hidden_size_per_attention_head,
437
+ dtype=dtype,
438
+ device=device,
439
+ )
440
+
441
+ def forward(
442
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
443
+ ):
444
+ # hidden_states: [b, sq, h]
445
+
446
+ # =================================================
447
+ # Pre-allocate memory for key-values for inference.
448
+ # =================================================
449
+ # =====================
450
+ # Query, Key, and Value
451
+ # =====================
452
+
453
+ # Attention heads [b, sq, h] --> [b, sq, (np * 3 * hn)]
454
+ mixed_x_layer = self.query_key_value(hidden_states)
455
+
456
+ if self.multi_query_attention:
457
+ (query_layer, key_layer, value_layer) = mixed_x_layer.split(
458
+ [
459
+ self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
460
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
461
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
462
+ ],
463
+ dim=-1,
464
+ )
465
+ query_layer = query_layer.view(
466
+ query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
467
+ )
468
+ key_layer = key_layer.view(
469
+ key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
470
+ )
471
+ value_layer = value_layer.view(
472
+ value_layer.size()[:-1]
473
+ + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
474
+ )
475
+ else:
476
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
477
+ (self.num_attention_heads_per_partition,
478
+ 3 * self.hidden_size_per_attention_head)
479
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
480
+
481
+ # [b, sq, np, 3 * hn] --> 3 [b, sq, np, hn]
482
+ (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
483
+
484
+ # [b, sq, np, hn] -> [b, np, sq, hn]
485
+ query_layer, key_layer, value_layer = [k.transpose(1, 2) for k in [query_layer, key_layer, value_layer]]
486
+
487
+ # apply relative positional encoding (rotary embedding)
488
+ if rotary_pos_emb is not None:
489
+ query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
490
+ key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
491
+
492
+ # adjust key and value for inference
493
+ if kv_cache is not None:
494
+ cache_k, cache_v = kv_cache
495
+ key_layer = torch.cat((cache_k, key_layer), dim=2)
496
+ value_layer = torch.cat((cache_v, value_layer), dim=2)
497
+ if use_cache:
498
+ if kv_cache is None:
499
+ kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)),
500
+ dim=1)
501
+ else:
502
+ kv_cache = (key_layer, value_layer)
503
+ else:
504
+ kv_cache = None
505
+
506
+ if self.multi_query_attention:
507
+ key_layer = key_layer.unsqueeze(2)
508
+ key_layer = key_layer.expand(
509
+ -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
510
+ )
511
+ key_layer = key_layer.contiguous().view(
512
+ key_layer.size()[:1] + (self.num_attention_heads_per_partition,) + key_layer.size()[3:]
513
+ )
514
+ value_layer = value_layer.unsqueeze(2)
515
+ value_layer = value_layer.expand(
516
+ -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
517
+ )
518
+ value_layer = value_layer.contiguous().view(
519
+ value_layer.size()[:1] + (self.num_attention_heads_per_partition,) + value_layer.size()[3:]
520
+ )
521
+
522
+ # ==================================
523
+ # core attention computation
524
+ # ==================================
525
+
526
+ context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
527
+
528
+ # =================
529
+ # Output. [sq, b, h]
530
+ # =================
531
+
532
+ output = self.dense(context_layer)
533
+
534
+ return output, kv_cache
535
+
536
+
537
+ def _config_to_kwargs(args):
538
+ common_kwargs = {
539
+ "dtype": args.torch_dtype,
540
+ }
541
+ return common_kwargs
542
+
543
+
544
+ class MLP(torch.nn.Module):
545
+ """MLP.
546
+
547
+ MLP will take the input with h hidden state, project it to 4*h
548
+ hidden dimension, perform nonlinear transformation, and project the
549
+ state back into h hidden dimension.
550
+ """
551
+
552
+ def __init__(self, config: ChatGLMConfig, device=None):
553
+ super(MLP, self).__init__()
554
+
555
+ self.add_bias = config.add_bias_linear
556
+
557
+ # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
558
+ self.dense_h_to_4h = nn.Linear(
559
+ config.hidden_size,
560
+ config.ffn_hidden_size * 2,
561
+ bias=self.add_bias,
562
+ device=device,
563
+ **_config_to_kwargs(config)
564
+ )
565
+
566
+ def swiglu(x):
567
+ x = torch.chunk(x, 2, dim=-1)
568
+ return F.silu(x[0]) * x[1]
569
+
570
+ self.activation_func = swiglu
571
+
572
+ # Project back to h.
573
+ self.dense_4h_to_h = nn.Linear(
574
+ config.ffn_hidden_size,
575
+ config.hidden_size,
576
+ bias=self.add_bias,
577
+ device=device,
578
+ **_config_to_kwargs(config)
579
+ )
580
+
581
+ def forward(self, hidden_states):
582
+ # [s, b, 4hp]
583
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
584
+ intermediate_parallel = self.activation_func(intermediate_parallel)
585
+ # [s, b, h]
586
+ output = self.dense_4h_to_h(intermediate_parallel)
587
+ return output
588
+
589
+
590
+ class GLMBlock(torch.nn.Module):
591
+ """A single transformer layer.
592
+
593
+ Transformer layer takes input with size [s, b, h] and returns an
594
+ output of the same size.
595
+ """
596
+
597
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
598
+ super(GLMBlock, self).__init__()
599
+ self.layer_number = layer_number
600
+
601
+ self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
602
+
603
+ self.fp32_residual_connection = config.fp32_residual_connection
604
+
605
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
606
+ # Layernorm on the input data.
607
+ self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
608
+ dtype=config.torch_dtype)
609
+
610
+ # Self attention.
611
+ self.self_attention = SelfAttention(config, layer_number, device=device)
612
+ self.hidden_dropout = config.hidden_dropout
613
+
614
+ # Layernorm on the attention output
615
+ self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
616
+ dtype=config.torch_dtype)
617
+
618
+ # MLP
619
+ self.mlp = MLP(config, device=device)
620
+
621
+ def forward(
622
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
623
+ ):
624
+ # hidden_states: [s, b, h]
625
+
626
+ # Layer norm at the beginning of the transformer layer.
627
+ layernorm_output = self.input_layernorm(hidden_states)
628
+ # Self attention.
629
+ attention_output, kv_cache = self.self_attention(
630
+ layernorm_output,
631
+ attention_mask,
632
+ rotary_pos_emb,
633
+ kv_cache=kv_cache,
634
+ use_cache=use_cache
635
+ )
636
+
637
+ # Residual connection.
638
+ if self.apply_residual_connection_post_layernorm:
639
+ residual = layernorm_output
640
+ else:
641
+ residual = hidden_states
642
+
643
+ layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
644
+ layernorm_input = residual + layernorm_input
645
+
646
+ # Layer norm post the self attention.
647
+ layernorm_output = self.post_attention_layernorm(layernorm_input)
648
+
649
+ # MLP.
650
+ mlp_output = self.mlp(layernorm_output)
651
+
652
+ # Second residual connection.
653
+ if self.apply_residual_connection_post_layernorm:
654
+ residual = layernorm_output
655
+ else:
656
+ residual = layernorm_input
657
+
658
+ output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
659
+ output = residual + output
660
+
661
+ return output, kv_cache
662
+
663
+
664
+ class GLMTransformer(torch.nn.Module):
665
+ """Transformer class."""
666
+
667
+ def __init__(self, config: ChatGLMConfig, device=None):
668
+ super(GLMTransformer, self).__init__()
669
+
670
+ self.fp32_residual_connection = config.fp32_residual_connection
671
+ self.post_layer_norm = config.post_layer_norm
672
+
673
+ # Number of layers.
674
+ self.num_layers = config.num_layers
675
+
676
+ # Transformer layers.
677
+ def build_layer(layer_number):
678
+ return GLMBlock(config, layer_number, device=device)
679
+
680
+ self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
681
+
682
+ if self.post_layer_norm:
683
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
684
+ # Final layer norm before output.
685
+ self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
686
+ dtype=config.torch_dtype)
687
+
688
+ self.gradient_checkpointing = False
689
+
690
+ def _get_layer(self, layer_number):
691
+ return self.layers[layer_number]
692
+
693
+ def forward(
694
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
695
+ use_cache: Optional[bool] = True,
696
+ output_hidden_states: Optional[bool] = False,
697
+ ):
698
+ if not kv_caches:
699
+ kv_caches = [None for _ in range(self.num_layers)]
700
+ presents = () if use_cache else None
701
+ if self.gradient_checkpointing and self.training:
702
+ if use_cache:
703
+ logger.warning_once(
704
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
705
+ )
706
+ use_cache = False
707
+
708
+ all_self_attentions = None
709
+ all_hidden_states = () if output_hidden_states else None
710
+ for index in range(self.num_layers):
711
+ if output_hidden_states:
712
+ all_hidden_states = all_hidden_states + (hidden_states,)
713
+
714
+ layer = self._get_layer(index)
715
+ if self.gradient_checkpointing and self.training:
716
+ layer_ret = torch.utils.checkpoint.checkpoint(
717
+ layer,
718
+ hidden_states,
719
+ attention_mask,
720
+ rotary_pos_emb,
721
+ kv_caches[index],
722
+ use_cache,
723
+ use_reentrant=False
724
+ )
725
+ else:
726
+ layer_ret = layer(
727
+ hidden_states,
728
+ attention_mask,
729
+ rotary_pos_emb,
730
+ kv_cache=kv_caches[index],
731
+ use_cache=use_cache
732
+ )
733
+ hidden_states, kv_cache = layer_ret
734
+ if use_cache:
735
+ # token by token decoding, use tuple format
736
+ if kv_caches[0] is not None:
737
+ presents = presents + (kv_cache,)
738
+ # prefilling in decoding, use tensor format to save cuda memory
739
+ else:
740
+ if len(presents) == 0:
741
+ presents = kv_cache
742
+ else:
743
+ presents = torch.cat((presents, kv_cache.to(presents.device)), dim=0)
744
+
745
+ if output_hidden_states:
746
+ all_hidden_states = all_hidden_states + (hidden_states,)
747
+
748
+ # Final layer norm.
749
+ if self.post_layer_norm:
750
+ hidden_states = self.final_layernorm(hidden_states)
751
+
752
+ return hidden_states, presents, all_hidden_states, all_self_attentions
753
+
754
+
755
+ class ChatGLMPreTrainedModel(PreTrainedModel):
756
+ """
757
+ An abstract class to handle weights initialization and
758
+ a simple interface for downloading and loading pretrained models.
759
+ """
760
+
761
+ is_parallelizable = False
762
+ supports_gradient_checkpointing = True
763
+ config_class = ChatGLMConfig
764
+ base_model_prefix = "transformer"
765
+ _no_split_modules = ["GLMBlock"]
766
+ _supports_flash_attn_2 = True
767
+ _supports_sdpa = True
768
+
769
+ def _init_weights(self, module: nn.Module):
770
+ """Initialize the weights."""
771
+ return
772
+
773
+ def get_masks(self, input_ids, past_key_values, padding_mask=None):
774
+ if self.config._attn_implementation == "flash_attention_2":
775
+ if padding_mask is not None and not padding_mask.all():
776
+ return padding_mask
777
+ return None
778
+ batch_size, seq_length = input_ids.shape
779
+ full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
780
+ full_attention_mask.tril_()
781
+ past_length = 0
782
+ if past_key_values:
783
+ past_length = past_key_values[0][0].shape[2]
784
+ if past_length:
785
+ full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
786
+ device=input_ids.device), full_attention_mask), dim=-1)
787
+ if padding_mask is not None:
788
+ full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
789
+ if not past_length and padding_mask is not None:
790
+ full_attention_mask -= padding_mask.unsqueeze(-1) - 1
791
+ full_attention_mask = (full_attention_mask < 0.5).bool()
792
+ full_attention_mask.unsqueeze_(1)
793
+ return full_attention_mask
794
+
795
+ def get_position_ids(self, input_ids, device):
796
+ batch_size, seq_length = input_ids.shape
797
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
798
+ return position_ids
799
+
800
+ # def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
801
+ # if not self.supports_gradient_checkpointing:
802
+ # raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
803
+
804
+
805
+ class Embedding(torch.nn.Module):
806
+ """Language model embeddings."""
807
+
808
+ def __init__(self, config: ChatGLMConfig, device=None):
809
+ super(Embedding, self).__init__()
810
+
811
+ self.hidden_size = config.hidden_size
812
+ # Word embeddings (parallel).
813
+ self.word_embeddings = nn.Embedding(
814
+ config.padded_vocab_size,
815
+ self.hidden_size,
816
+ dtype=config.torch_dtype,
817
+ device=device
818
+ )
819
+ self.fp32_residual_connection = config.fp32_residual_connection
820
+
821
+ def forward(self, input_ids):
822
+ # Embeddings.
823
+ words_embeddings = self.word_embeddings(input_ids)
824
+ embeddings = words_embeddings
825
+ # If the input flag for fp32 residual connection is set, convert for float.
826
+ if self.fp32_residual_connection:
827
+ embeddings = embeddings.float()
828
+ return embeddings
829
+
830
+
831
+ class ChatGLMModel(ChatGLMPreTrainedModel):
832
+ def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
833
+ super().__init__(config)
834
+ if empty_init:
835
+ init_method = skip_init
836
+ else:
837
+ init_method = default_init
838
+ init_kwargs = {}
839
+ if device is not None:
840
+ init_kwargs["device"] = device
841
+ self.embedding = init_method(Embedding, config, **init_kwargs)
842
+ self.num_layers = config.num_layers
843
+ self.multi_query_group_num = config.multi_query_group_num
844
+ self.kv_channels = config.kv_channels
845
+
846
+ # Rotary positional embeddings
847
+ self.seq_length = config.seq_length
848
+ rotary_dim = (
849
+ config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
850
+ )
851
+
852
+ self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio,
853
+ original_impl=config.original_rope,
854
+ device=device, dtype=config.torch_dtype)
855
+ self.encoder = init_method(GLMTransformer, config, **init_kwargs)
856
+ self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
857
+ dtype=config.torch_dtype, **init_kwargs)
858
+
859
+ def get_input_embeddings(self):
860
+ return self.embedding.word_embeddings
861
+
862
+ def set_input_embeddings(self, value):
863
+ self.embedding.word_embeddings = value
864
+
865
+ def forward(
866
+ self,
867
+ input_ids,
868
+ position_ids: Optional[torch.Tensor] = None,
869
+ attention_mask: Optional[torch.BoolTensor] = None,
870
+ full_attention_mask: Optional[torch.BoolTensor] = None,
871
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
872
+ inputs_embeds: Optional[torch.Tensor] = None,
873
+ use_cache: Optional[bool] = None,
874
+ output_attentions: Optional[bool] = None,
875
+ output_hidden_states: Optional[bool] = None,
876
+ return_dict: Optional[bool] = None,
877
+ ):
878
+ output_hidden_states = (
879
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
880
+ )
881
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
882
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
883
+
884
+ batch_size, seq_length = input_ids.shape
885
+
886
+ if inputs_embeds is None:
887
+ inputs_embeds = self.embedding(input_ids)
888
+
889
+ if full_attention_mask is None:
890
+ if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
891
+ full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
892
+
893
+ # Rotary positional embeddings
894
+ rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
895
+ if position_ids is not None:
896
+ rotary_pos_emb = rotary_pos_emb[position_ids]
897
+ else:
898
+ rotary_pos_emb = rotary_pos_emb[None, :seq_length]
899
+
900
+ # Run encoder.
901
+ hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
902
+ inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
903
+ kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
904
+ )
905
+ if presents is not None and type(presents) is torch.Tensor:
906
+ presents = presents.split(1, dim=0)
907
+ presents = list(presents)
908
+ presents = [list(x.squeeze(0).split(1, dim=0)) for x in presents]
909
+ presents = [tuple([x.squeeze(0) for x in y]) for y in presents]
910
+ presents = tuple(presents)
911
+
912
+ if not return_dict:
913
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
914
+
915
+ return BaseModelOutputWithPast(
916
+ last_hidden_state=hidden_states,
917
+ past_key_values=presents,
918
+ hidden_states=all_hidden_states,
919
+ attentions=all_self_attentions,
920
+ )
921
+
922
+
923
+ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
924
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
925
+ super().__init__(config)
926
+
927
+ self.max_sequence_length = config.max_length
928
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
929
+ self.config = config
930
+
931
+ def _update_model_kwargs_for_generation(
932
+ self,
933
+ outputs: ModelOutput,
934
+ model_kwargs: Dict[str, Any],
935
+ is_encoder_decoder: bool = False,
936
+ standardize_cache_format: bool = False,
937
+ ) -> Dict[str, Any]:
938
+ # update past_key_values
939
+ model_kwargs["past_key_values"] = self._extract_past_from_model_output(
940
+ outputs, standardize_cache_format=standardize_cache_format
941
+ )
942
+
943
+ # update attention mask
944
+ if "attention_mask" in model_kwargs:
945
+ attention_mask = model_kwargs["attention_mask"]
946
+ model_kwargs["attention_mask"] = torch.cat(
947
+ [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
948
+ )
949
+
950
+ # update position ids
951
+ if "position_ids" in model_kwargs:
952
+ position_ids = model_kwargs["position_ids"]
953
+ new_position_id = position_ids[..., -1:].clone()
954
+ new_position_id += 1
955
+ model_kwargs["position_ids"] = torch.cat(
956
+ [position_ids, new_position_id], dim=-1
957
+ )
958
+
959
+ model_kwargs["is_first_forward"] = False
960
+ return model_kwargs
961
+
962
+ def prepare_inputs_for_generation(
963
+ self,
964
+ input_ids: torch.LongTensor,
965
+ past_key_values: Optional[torch.Tensor] = None,
966
+ attention_mask: Optional[torch.Tensor] = None,
967
+ position_ids: Optional[torch.Tensor] = None,
968
+ use_cache: Optional[bool] = None,
969
+ is_first_forward: bool = True,
970
+ **kwargs
971
+ ) -> dict:
972
+ # only last token for input_ids if past is not None
973
+ if position_ids is None:
974
+ position_ids = self.get_position_ids(input_ids, device=input_ids.device)
975
+ if not is_first_forward:
976
+ if past_key_values is not None:
977
+ position_ids = position_ids[..., -1:]
978
+ input_ids = input_ids[:, -1:]
979
+ return {
980
+ "input_ids": input_ids,
981
+ "past_key_values": past_key_values,
982
+ "position_ids": position_ids,
983
+ "attention_mask": attention_mask,
984
+ "return_last_logit": True,
985
+ "use_cache": use_cache
986
+ }
987
+
988
+ def forward(
989
+ self,
990
+ input_ids: Optional[torch.Tensor] = None,
991
+ position_ids: Optional[torch.Tensor] = None,
992
+ attention_mask: Optional[torch.Tensor] = None,
993
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
994
+ inputs_embeds: Optional[torch.Tensor] = None,
995
+ labels: Optional[torch.Tensor] = None,
996
+ use_cache: Optional[bool] = None,
997
+ output_attentions: Optional[bool] = None,
998
+ output_hidden_states: Optional[bool] = None,
999
+ return_dict: Optional[bool] = None,
1000
+ return_last_logit: Optional[bool] = False,
1001
+ ):
1002
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1003
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1004
+
1005
+ transformer_outputs = self.transformer(
1006
+ input_ids=input_ids,
1007
+ position_ids=position_ids,
1008
+ attention_mask=attention_mask,
1009
+ past_key_values=past_key_values,
1010
+ inputs_embeds=inputs_embeds,
1011
+ use_cache=use_cache,
1012
+ output_hidden_states=output_hidden_states,
1013
+ return_dict=return_dict,
1014
+ )
1015
+
1016
+ hidden_states = transformer_outputs[0]
1017
+ if return_last_logit:
1018
+ hidden_states = hidden_states[:, -1:]
1019
+ lm_logits = self.transformer.output_layer(hidden_states)
1020
+
1021
+ loss = None
1022
+ if labels is not None:
1023
+ lm_logits = lm_logits.to(torch.float32)
1024
+
1025
+ # Shift so that tokens < n predict n
1026
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1027
+ shift_labels = labels[..., 1:].contiguous()
1028
+ # Flatten the tokens
1029
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
1030
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1031
+
1032
+ lm_logits = lm_logits.to(hidden_states.dtype)
1033
+ loss = loss.to(hidden_states.dtype)
1034
+
1035
+ if not return_dict:
1036
+ output = (lm_logits,) + transformer_outputs[1:]
1037
+ return ((loss,) + output) if loss is not None else output
1038
+
1039
+ return CausalLMOutputWithPast(
1040
+ loss=loss,
1041
+ logits=lm_logits,
1042
+ past_key_values=transformer_outputs.past_key_values,
1043
+ hidden_states=transformer_outputs.hidden_states,
1044
+ attentions=transformer_outputs.attentions,
1045
+ )
1046
+
1047
+ @staticmethod
1048
+ def _reorder_cache(
1049
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
1050
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
1051
+ """
1052
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1053
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1054
+ beam_idx at every generation step.
1055
+
1056
+ Output shares the same memory storage as `past`.
1057
+ """
1058
+ return tuple(
1059
+ (
1060
+ layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)),
1061
+ layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)),
1062
+ )
1063
+ for layer_past in past
1064
+ )
1065
+
1066
+ def process_response(self, output, history):
1067
+ content = ""
1068
+ history = deepcopy(history)
1069
+ for response in output.split("<|assistant|>"):
1070
+ if "\n" in response:
1071
+ metadata, content = response.split("\n", maxsplit=1)
1072
+ else:
1073
+ metadata, content = "", response
1074
+ if not metadata.strip():
1075
+ content = content.strip()
1076
+ history.append({"role": "assistant", "metadata": metadata, "content": content})
1077
+ content = content.replace("[[训练时间]]", "2023年")
1078
+ else:
1079
+ history.append({"role": "assistant", "metadata": metadata, "content": content})
1080
+ if history[0]["role"] == "system" and "tools" in history[0]:
1081
+ parameters = json.loads(content)
1082
+ content = {"name": metadata.strip(), "parameters": parameters}
1083
+ else:
1084
+ content = {"name": metadata.strip(), "content": content}
1085
+ return content, history
1086
+
1087
+ @torch.inference_mode()
1088
+ def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
1089
+ max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
1090
+ **kwargs):
1091
+ if history is None:
1092
+ history = []
1093
+ if logits_processor is None:
1094
+ logits_processor = LogitsProcessorList()
1095
+ logits_processor.append(InvalidScoreLogitsProcessor())
1096
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1097
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1098
+ history.append({"role": role, "content": query})
1099
+ inputs = tokenizer.apply_chat_template(history, add_generation_prompt=True, tokenize=True,
1100
+ return_tensors="pt", return_dict=True)
1101
+ inputs = inputs.to(self.device)
1102
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|user|>"),
1103
+ tokenizer.convert_tokens_to_ids("<|observation|>")]
1104
+ outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
1105
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1106
+ response = tokenizer.decode(outputs)
1107
+ response, history = self.process_response(response, history)
1108
+ return response, history
1109
+
1110
+ @torch.inference_mode()
1111
+ def stream_chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
1112
+ past_key_values=None, max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8,
1113
+ logits_processor=None, return_past_key_values=False, **kwargs):
1114
+ if history is None:
1115
+ history = []
1116
+ if logits_processor is None:
1117
+ logits_processor = LogitsProcessorList()
1118
+ logits_processor.append(InvalidScoreLogitsProcessor())
1119
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|user|>"),
1120
+ tokenizer.convert_tokens_to_ids("<|observation|>")]
1121
+ gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
1122
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1123
+ if past_key_values is None:
1124
+ inputs = tokenizer.apply_chat_template(history + [{"role": role, "content": query}],
1125
+ add_generation_prompt=True, tokenize=True, return_tensors="pt",
1126
+ return_dict=True)
1127
+ else:
1128
+ inputs = tokenizer.apply_chat_template([{"role": role, "content": query}], add_special_tokens=False,
1129
+ add_generation_prompt=True, tokenize=True, return_tensors="pt",
1130
+ return_dict=True)
1131
+ inputs = inputs.to(self.device)
1132
+ if past_key_values is not None:
1133
+ past_length = past_key_values[0][0].shape[2]
1134
+ inputs.position_ids += past_length
1135
+ attention_mask = inputs.attention_mask
1136
+ attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
1137
+ inputs['attention_mask'] = attention_mask
1138
+ history.append({"role": role, "content": query})
1139
+ for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
1140
+ eos_token_id=eos_token_id, return_past_key_values=return_past_key_values,
1141
+ **gen_kwargs):
1142
+ if return_past_key_values:
1143
+ outputs, past_key_values = outputs
1144
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1145
+ response = tokenizer.decode(outputs)
1146
+ if response and response[-1] != "�":
1147
+ response, new_history = self.process_response(response, history)
1148
+ if return_past_key_values:
1149
+ yield response, new_history, past_key_values
1150
+ else:
1151
+ yield response, new_history
1152
+
1153
+ @torch.inference_mode()
1154
+ def stream_generate(
1155
+ self,
1156
+ input_ids,
1157
+ generation_config: Optional[GenerationConfig] = None,
1158
+ logits_processor: Optional[LogitsProcessorList] = None,
1159
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1160
+ prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1161
+ return_past_key_values=False,
1162
+ **kwargs,
1163
+ ):
1164
+ batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
1165
+
1166
+ if generation_config is None:
1167
+ generation_config = self.generation_config
1168
+ generation_config = copy.deepcopy(generation_config)
1169
+ model_kwargs = generation_config.update(**kwargs)
1170
+ model_kwargs["use_cache"] = generation_config.use_cache
1171
+ bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
1172
+
1173
+ if isinstance(eos_token_id, int):
1174
+ eos_token_id = [eos_token_id]
1175
+ eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
1176
+
1177
+ has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1178
+ if has_default_max_length and generation_config.max_new_tokens is None:
1179
+ warnings.warn(
1180
+ f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
1181
+ "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
1182
+ " recommend using `max_new_tokens` to control the maximum length of the generation.",
1183
+ UserWarning,
1184
+ )
1185
+ elif generation_config.max_new_tokens is not None:
1186
+ generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
1187
+ if not has_default_max_length:
1188
+ logger.warn(
1189
+ f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
1190
+ f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
1191
+ "Please refer to the documentation for more information. "
1192
+ "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
1193
+ UserWarning,
1194
+ )
1195
+
1196
+ if input_ids_seq_length >= generation_config.max_length:
1197
+ input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
1198
+ logger.warning(
1199
+ f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
1200
+ f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
1201
+ " increasing `max_new_tokens`."
1202
+ )
1203
+
1204
+ # 2. Set generation parameters if not already defined
1205
+ logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
1206
+ stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
1207
+
1208
+ logits_processor = self._get_logits_processor(
1209
+ generation_config=generation_config,
1210
+ input_ids_seq_length=input_ids_seq_length,
1211
+ encoder_input_ids=input_ids,
1212
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1213
+ logits_processor=logits_processor,
1214
+ )
1215
+
1216
+ stopping_criteria = self._get_stopping_criteria(
1217
+ generation_config=generation_config, stopping_criteria=stopping_criteria
1218
+ )
1219
+ logits_warper = self._get_logits_warper(generation_config)
1220
+
1221
+ unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
1222
+ scores = None
1223
+ while True:
1224
+ model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
1225
+ # forward pass to get next token
1226
+ outputs = self(
1227
+ **model_inputs,
1228
+ return_dict=True,
1229
+ output_attentions=False,
1230
+ output_hidden_states=False,
1231
+ )
1232
+
1233
+ next_token_logits = outputs.logits[:, -1, :]
1234
+
1235
+ # pre-process distribution
1236
+ next_token_scores = logits_processor(input_ids, next_token_logits)
1237
+ next_token_scores = logits_warper(input_ids, next_token_scores)
1238
+
1239
+ # sample
1240
+ probs = nn.functional.softmax(next_token_scores, dim=-1)
1241
+ if generation_config.do_sample:
1242
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
1243
+ else:
1244
+ next_tokens = torch.argmax(probs, dim=-1)
1245
+ # update generated ids, model inputs, and length for next step
1246
+ input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
1247
+ model_kwargs = self._update_model_kwargs_for_generation(
1248
+ outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
1249
+ )
1250
+ unfinished_sequences = unfinished_sequences.mul(
1251
+ next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
1252
+ )
1253
+ if return_past_key_values:
1254
+ yield input_ids, outputs.past_key_values
1255
+ else:
1256
+ yield input_ids
1257
+ # stop when each sentence is finished, or if we exceed the maximum length
1258
+ if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
1259
+ break
1260
+
1261
+
1262
+ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
1263
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
1264
+ super().__init__(config)
1265
+
1266
+ self.num_labels = config.num_labels
1267
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
1268
+
1269
+ self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=config.torch_dtype)
1270
+ if config.classifier_dropout is not None:
1271
+ self.dropout = nn.Dropout(config.classifier_dropout)
1272
+ else:
1273
+ self.dropout = None
1274
+ self.config = config
1275
+
1276
+ def forward(
1277
+ self,
1278
+ input_ids: Optional[torch.LongTensor] = None,
1279
+ position_ids: Optional[torch.LongTensor] = None,
1280
+ attention_mask: Optional[torch.Tensor] = None,
1281
+ full_attention_mask: Optional[torch.Tensor] = None,
1282
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1283
+ inputs_embeds: Optional[torch.LongTensor] = None,
1284
+ labels: Optional[torch.LongTensor] = None,
1285
+ use_cache: Optional[bool] = None,
1286
+ output_attentions: Optional[bool] = None,
1287
+ output_hidden_states: Optional[bool] = None,
1288
+ return_dict: Optional[bool] = None,
1289
+ ) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
1290
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1291
+
1292
+ transformer_outputs = self.transformer(
1293
+ input_ids=input_ids,
1294
+ position_ids=position_ids,
1295
+ attention_mask=attention_mask,
1296
+ full_attention_mask=full_attention_mask,
1297
+ past_key_values=past_key_values,
1298
+ inputs_embeds=inputs_embeds,
1299
+ use_cache=use_cache,
1300
+ output_attentions=output_attentions,
1301
+ output_hidden_states=output_hidden_states,
1302
+ return_dict=return_dict,
1303
+ )
1304
+
1305
+ hidden_states = transformer_outputs[0]
1306
+ pooled_hidden_states = hidden_states[:, -1]
1307
+ if self.dropout is not None:
1308
+ pooled_hidden_states = self.dropout(pooled_hidden_states)
1309
+ logits = self.classifier_head(pooled_hidden_states)
1310
+
1311
+ loss = None
1312
+ if labels is not None:
1313
+ if self.config.problem_type is None:
1314
+ if self.num_labels == 1:
1315
+ self.config.problem_type = "regression"
1316
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1317
+ self.config.problem_type = "single_label_classification"
1318
+ else:
1319
+ self.config.problem_type = "multi_label_classification"
1320
+
1321
+ if self.config.problem_type == "regression":
1322
+ loss_fct = MSELoss()
1323
+ if self.num_labels == 1:
1324
+ loss = loss_fct(logits.squeeze().float(), labels.squeeze())
1325
+ else:
1326
+ loss = loss_fct(logits.float(), labels)
1327
+ elif self.config.problem_type == "single_label_classification":
1328
+ loss_fct = CrossEntropyLoss()
1329
+ loss = loss_fct(logits.view(-1, self.num_labels).float(), labels.view(-1))
1330
+ elif self.config.problem_type == "multi_label_classification":
1331
+ loss_fct = BCEWithLogitsLoss()
1332
+ loss = loss_fct(logits.float(), labels.view(-1, self.num_labels))
1333
+
1334
+ if not return_dict:
1335
+ output = (logits,) + transformer_outputs[1:]
1336
+ return ((loss,) + output) if loss is not None else output
1337
+
1338
+ return SequenceClassifierOutputWithPast(
1339
+ loss=loss,
1340
+ logits=logits,
1341
+ past_key_values=transformer_outputs.past_key_values,
1342
+ hidden_states=transformer_outputs.hidden_states,
1343
+ attentions=transformer_outputs.attentions,
1344
+ )
pytorch_actor.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69021db69cb6a2c5c6b5df02ed0f164c66e316a925492fe8ad483e9b960d398c
3
+ size 37599906018
special_tokens_map.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "[MASK]",
5
+ "[gMASK]",
6
+ "[sMASK]",
7
+ "<sop>",
8
+ "<eop>",
9
+ "<|system|>",
10
+ "<|user|>",
11
+ "<|assistant|>",
12
+ "<|observation|>",
13
+ "<|begin_of_image|>",
14
+ "<|end_of_image|>",
15
+ "<|begin_of_video|>",
16
+ "<|end_of_video|>"
17
+ ],
18
+ "eos_token": {
19
+ "content": "<|eot_id|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": "<|eot_id|>"
26
+ }
tokenization_chatglm.py ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import regex as re
2
+ import base64
3
+ import os
4
+ import json
5
+ import tiktoken
6
+ from torch import TensorType
7
+ from typing import List, Optional, Union, Dict, Any
8
+ from transformers import PreTrainedTokenizer
9
+ from transformers.utils import logging, PaddingStrategy
10
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
11
+
12
+
13
+ class ChatGLM4Tokenizer(PreTrainedTokenizer):
14
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
15
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
16
+
17
+ def __init__(
18
+ self,
19
+ vocab_file,
20
+ padding_side="left",
21
+ clean_up_tokenization_spaces=False,
22
+ encode_special_tokens=False,
23
+ **kwargs
24
+ ):
25
+ self.name = "GLM4Tokenizer"
26
+ self.vocab_file = vocab_file
27
+ pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
28
+ self.pat_str = re.compile(pat_str)
29
+ self.encode_special_tokens = encode_special_tokens
30
+
31
+ mergeable_ranks = {}
32
+ with open(vocab_file) as f:
33
+ for line in f:
34
+ token, rank = line.strip().split()
35
+ rank = int(rank)
36
+ token = base64.b64decode(token)
37
+ mergeable_ranks[token] = rank
38
+
39
+ self.mergeable_ranks = mergeable_ranks
40
+
41
+ self.tokenizer = tiktoken.Encoding(
42
+ name="my_tokenizer",
43
+ pat_str=pat_str,
44
+ mergeable_ranks=mergeable_ranks,
45
+ special_tokens={}
46
+ )
47
+ self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
48
+ self.n_words = len(self.decoder)
49
+
50
+ super().__init__(
51
+ padding_side=padding_side,
52
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
53
+ **kwargs
54
+ )
55
+
56
+ @property
57
+ def vocab_size(self):
58
+ return self.n_words
59
+
60
+ def get_vocab(self):
61
+ """ Returns vocab as a dict """
62
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
63
+ vocab.update(self.added_tokens_encoder)
64
+ return vocab
65
+
66
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
67
+ """
68
+ Converts a sequence of tokens in a single string.
69
+ """
70
+ text = ""
71
+ temp = b""
72
+ for t in tokens:
73
+ if isinstance(t, str):
74
+ if temp:
75
+ text += temp.decode("utf-8", errors="replace")
76
+ temp = b""
77
+ text += t
78
+ elif isinstance(t, bytes):
79
+ temp += t
80
+ else:
81
+ raise TypeError("token should only be of type types or str")
82
+ if temp:
83
+ text += temp.decode("utf-8", errors="replace")
84
+ return text
85
+
86
+ def _tokenize(self, text, **kwargs):
87
+ tokens = []
88
+ ids = self.tokenizer.encode(text)
89
+ for t in ids:
90
+ tokens.append(self.decoder[t])
91
+ return tokens
92
+
93
+ def _convert_token_to_id(self, token):
94
+ """ Converts a token (str) in an id using the vocab. """
95
+ return self.mergeable_ranks[token]
96
+
97
+ def _convert_id_to_token(self, index):
98
+ """Converts an index (integer) in a token (str) using the vocab."""
99
+ return self.decoder.get(index, "")
100
+
101
+ def save_vocabulary(self, save_directory, filename_prefix=None):
102
+ """
103
+ Save the vocabulary and special tokens file to a directory.
104
+
105
+ Args:
106
+ save_directory (`str`):
107
+ The directory in which to save the vocabulary.
108
+ filename_prefix (`str`, *optional*):
109
+ An optional prefix to add to the named of the saved files.
110
+
111
+ Returns:
112
+ `Tuple(str)`: Paths to the files saved.
113
+ """
114
+ if os.path.isdir(save_directory):
115
+ vocab_file = os.path.join(
116
+ save_directory, self.vocab_files_names["vocab_file"]
117
+ )
118
+ else:
119
+ vocab_file = save_directory
120
+
121
+ with open(self.vocab_file, 'rb') as fin:
122
+ proto_str = fin.read()
123
+
124
+ with open(vocab_file, "wb") as writer:
125
+ writer.write(proto_str)
126
+
127
+ return (vocab_file,)
128
+
129
+ def get_prefix_tokens(self):
130
+ prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
131
+ return prefix_tokens
132
+
133
+ def build_single_message(self, role, metadata, message, tokenize=True):
134
+ assert role in ["system", "user", "assistant", "observation"], role
135
+ if tokenize:
136
+ role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n",
137
+ disallowed_special=())
138
+ message_tokens = self.tokenizer.encode(message, disallowed_special=())
139
+ tokens = role_tokens + message_tokens
140
+ return tokens
141
+ else:
142
+ return str(f"<|{role}|>{metadata}\n{message}")
143
+
144
+ def apply_chat_template(
145
+ self,
146
+ conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]], "Conversation"],
147
+ add_generation_prompt: bool = False,
148
+ tokenize: bool = True,
149
+ padding: bool = False,
150
+ truncation: bool = False,
151
+ max_length: Optional[int] = None,
152
+ return_tensors: Optional[Union[str, TensorType]] = None,
153
+ return_dict: bool = False,
154
+ tokenizer_kwargs: Optional[Dict[str, Any]] = None,
155
+ add_special_tokens: bool = True,
156
+ **kwargs,
157
+ ) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]:
158
+
159
+ if return_dict and not tokenize:
160
+ raise ValueError(
161
+ "`return_dict=True` is incompatible with `tokenize=False`, because there is no dict "
162
+ "of tokenizer outputs to return."
163
+ )
164
+
165
+ def handle_single_conversation(conversation):
166
+ input_ids = self.get_prefix_tokens() if add_special_tokens else []
167
+ input_message = "[gMASK]<sop>" if add_special_tokens else ""
168
+ for item in conversation:
169
+ if item.get("tools"):
170
+ tools = item["tools"]
171
+ content = "你是一个名为 GhatGLM 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。"
172
+ content += "\n\n# 可用工具"
173
+ for tool in tools:
174
+ if tool["type"] == "function":
175
+ function = tool["function"]
176
+ content += f"\n\n## {function['name']}\n\n{json.dumps(function, ensure_ascii=False, indent=4)}"
177
+ content += "\n在调用上述函数时,请使用 Json 格式表示调用的参数。"
178
+ elif tool["type"] == "python":
179
+ content += "\n\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。不要使用 `python` 进行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。"
180
+ elif tool["type"] == "simple_browser":
181
+ content += "\n\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n`open_url(url: str)`:打开指定的 URL。\n\n使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。在回复中应当引用信息来源。\n 如果用户提供了 URL,也可以用 `open_url` 直接打开页面。\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。"
182
+ elif tool["type"] == "cogview":
183
+ content += "\n\n## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。"
184
+ else:
185
+ raise NotImplementedError(f"Unknown tool type {tool['type']}")
186
+ input = self.build_single_message("system", "", content, tokenize=tokenize)
187
+ if tokenize:
188
+ input_ids.extend(input)
189
+ else:
190
+ input_message += input
191
+ if item["content"]:
192
+ input = self.build_single_message(
193
+ item["role"],
194
+ item.get("metadata", ""),
195
+ item["content"],
196
+ tokenize=tokenize
197
+ )
198
+ if tokenize:
199
+ input_ids.extend(input)
200
+ else:
201
+ input_message += input
202
+ if add_generation_prompt:
203
+ if tokenize:
204
+ input_ids.extend([self.convert_tokens_to_ids("<|assistant|>")])
205
+ else:
206
+ input_message += "<|assistant|>"
207
+ return input_ids if tokenize else input_message
208
+
209
+ # Main logic to handle different conversation formats
210
+ if isinstance(conversation, list) and all(isinstance(i, dict) for i in conversation):
211
+ result = handle_single_conversation(conversation)
212
+ elif isinstance(conversation, list) and all(isinstance(i, list) for i in conversation):
213
+ result = [handle_single_conversation(c) for c in conversation]
214
+ elif hasattr(conversation, "messages"):
215
+ result = handle_single_conversation(conversation.messages)
216
+ else:
217
+ raise ValueError("Invalid conversation format")
218
+
219
+ if tokenize:
220
+ output = self.batch_encode_plus(
221
+ [result] if isinstance(result[0], int) else result,
222
+ padding=padding,
223
+ truncation=truncation,
224
+ max_length=max_length,
225
+ return_tensors=return_tensors,
226
+ is_split_into_words=True,
227
+ add_special_tokens=False
228
+ )
229
+ if return_dict:
230
+ return output
231
+ else:
232
+ return output["input_ids"]
233
+ else:
234
+ return result
235
+
236
+
237
+ def build_inputs_with_special_tokens(
238
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
239
+ ) -> List[int]:
240
+ """
241
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
242
+ adding special tokens. A BERT sequence has the following format:
243
+
244
+ - single sequence: `[CLS] X [SEP]`
245
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
246
+
247
+ Args:
248
+ token_ids_0 (`List[int]`):
249
+ List of IDs to which the special tokens will be added.
250
+ token_ids_1 (`List[int]`, *optional*):
251
+ Optional second list of IDs for sequence pairs.
252
+
253
+ Returns:
254
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
255
+ """
256
+ prefix_tokens = self.get_prefix_tokens()
257
+ token_ids_0 = prefix_tokens + token_ids_0
258
+ if token_ids_1 is not None:
259
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("<eos>")]
260
+ return token_ids_0
261
+
262
+ def _pad(
263
+ self,
264
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
265
+ max_length: Optional[int] = None,
266
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
267
+ pad_to_multiple_of: Optional[int] = None,
268
+ return_attention_mask: Optional[bool] = None,
269
+ ) -> dict:
270
+ """
271
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
272
+
273
+ Args:
274
+ encoded_inputs:
275
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
276
+ max_length: maximum length of the returned list and optionally padding length (see below).
277
+ Will truncate by taking into account the special tokens.
278
+ padding_strategy: PaddingStrategy to use for padding.
279
+
280
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
281
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
282
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
283
+ The tokenizer padding sides are defined in self.padding_side:
284
+
285
+ - 'left': pads on the left of the sequences
286
+ - 'right': pads on the right of the sequences
287
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
288
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
289
+ `>= 7.5` (Volta).
290
+ return_attention_mask:
291
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
292
+ """
293
+ # Load from model defaults
294
+ assert self.padding_side == "left"
295
+
296
+ required_input = encoded_inputs[self.model_input_names[0]]
297
+ seq_length = len(required_input)
298
+
299
+ if padding_strategy == PaddingStrategy.LONGEST:
300
+ max_length = len(required_input)
301
+
302
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
303
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
304
+
305
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
306
+
307
+ # Initialize attention mask if not present.
308
+ if "attention_mask" not in encoded_inputs:
309
+ encoded_inputs["attention_mask"] = [1] * seq_length
310
+
311
+ if "position_ids" not in encoded_inputs:
312
+ encoded_inputs["position_ids"] = list(range(seq_length))
313
+
314
+ if needs_to_be_padded:
315
+ difference = max_length - len(required_input)
316
+
317
+ if "attention_mask" in encoded_inputs:
318
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
319
+ if "position_ids" in encoded_inputs:
320
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
321
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
322
+
323
+ return encoded_inputs
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a493598071550244b2ee7f26118f3edec2150b9dfa967929a99052ac83fe716
3
+ size 2623634
tokenizer_config.json ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "151329": {
4
+ "content": "<|endoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "151330": {
12
+ "content": "[MASK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "151331": {
20
+ "content": "[gMASK]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "151332": {
28
+ "content": "[sMASK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "151333": {
36
+ "content": "<sop>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "151334": {
44
+ "content": "<eop>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "151335": {
52
+ "content": "<|system|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "151336": {
60
+ "content": "<|user|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "151337": {
68
+ "content": "<|assistant|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "151338": {
76
+ "content": "<|observation|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "151339": {
84
+ "content": "<|begin_of_image|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "151340": {
92
+ "content": "<|end_of_image|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "151341": {
100
+ "content": "<|begin_of_video|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "151342": {
108
+ "content": "<|end_of_video|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "151343": {
116
+ "content": "<|eot_id|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ }
123
+ },
124
+ "additional_special_tokens": [
125
+ "<|endoftext|>",
126
+ "[MASK]",
127
+ "[gMASK]",
128
+ "[sMASK]",
129
+ "<sop>",
130
+ "<eop>",
131
+ "<|system|>",
132
+ "<|user|>",
133
+ "<|assistant|>",
134
+ "<|observation|>",
135
+ "<|begin_of_image|>",
136
+ "<|end_of_image|>",
137
+ "<|begin_of_video|>",
138
+ "<|end_of_video|>"
139
+ ],
140
+ "auto_map": {
141
+ "AutoTokenizer": [
142
+ "tokenization_chatglm.ChatGLM4Tokenizer",
143
+ null
144
+ ]
145
+ },
146
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<|start_header_id|>system<|end_header_id|>\n\n' + system_message + '<|eot_id|>' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ content }}{% elif message['role'] == 'assistant' %}{{ content + '<|eot_id|>' }}{% endif %}{% endfor %}",
147
+ "clean_up_tokenization_spaces": false,
148
+ "do_lower_case": false,
149
+ "eos_token": "<|eot_id|>",
150
+ "model_max_length": 8000,
151
+ "pad_token": "<|eot_id|>",
152
+ "padding_side": "left",
153
+ "remove_space": false,
154
+ "split_special_tokens": false,
155
+ "tokenizer_class": "ChatGLM4Tokenizer",
156
+ "use_cache": false
157
+ }