File size: 6,247 Bytes
e04f98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# coding=utf-8
# Copyright 2022 shunxing1234 and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" GLM model configuration """

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

logger = logging.get_logger(__name__)

GLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "shunxing1234/GLM": "https://huggingface.co./shunxing1234/GLM/resolve/main/config.json",
    # See all GLM models at https://huggingface.co./models?filter=glm
}


class GLMConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`~GLMModel`].
    It is used to instantiate an GLM model according to the specified arguments, defining the model
    architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
    the GLM [shunxing1234/GLM-base-cased](https://huggingface.co./shunxing1234/GLM-base-cased) architecture.

    Configuration objects inherit from  [`PretrainedConfig`] and can be used
    to control the model outputs. Read the documentation from  [`PretrainedConfig`]
    for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the GLM model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`~GLMModel`] or
            [`~TFGLMModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler.
            If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with.
            Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`~GLMModel`] or
            [`~TFGLMModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        Example:

    ```python
    >>> from transformers import GLMModel, GLMConfig

    >>> # Initializing a GLM shunxing1234/GLM-base-cased style configuration
    >>> configuration = GLMConfig()

    >>> # Initializing a model from the shunxing1234/GLM-base-cased style configuration
    >>> model = GLMModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
"""
    model_type = "glm"
    attribute_map = {
        "num_hidden_layers": "num_layers"
    }

    def __init__(
            self,
            num_layers=24,
            vocab_size=30592,
            hidden_size=1024,
            num_attention_heads=16,
            embedding_dropout_prob=0.1,
            attention_dropout_prob=0.1,
            output_dropout_prob=0.1,
            max_sequence_length=512,
            checkpoint_activations=False,
            checkpoint_num_layers=1,
            parallel_output=True,
            relative_encoding=False,
            block_position_encoding=True,
            output_predict=False,
            spell_length=None,
            spell_func="lstm",
            attention_scale=1.0,
            initializer_range=0.02,
            pool_token="cls",
            **kwargs
    ):
        self.num_layers = num_layers
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.embedding_dropout_prob = embedding_dropout_prob
        self.attention_dropout_prob = attention_dropout_prob
        self.output_dropout_prob = output_dropout_prob
        self.max_sequence_length = max_sequence_length
        self.checkpoint_activations = checkpoint_activations
        self.checkpoint_num_layers = checkpoint_num_layers
        self.parallel_output = parallel_output
        self.relative_encoding = relative_encoding
        self.block_position_encoding = block_position_encoding
        self.output_predict = output_predict
        self.spell_length = spell_length
        self.spell_func = spell_func
        self.attention_scale = attention_scale
        self.initializer_range = initializer_range
        self.pool_token = pool_token

        super().__init__(**kwargs)