Ubuntu commited on
Commit
e55133d
·
1 Parent(s): 5ce2ecb
LICENSE ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The GLM-Edge License
2
+
3
+ 1. 定义
4
+
5
+ “许可方”是指分发其软件的 GLM-Edge 模型团队。
6
+ “软件”是指根据本许可提供的 GLM-Edge 模型参数。
7
+
8
+ 2. 许可授予
9
+
10
+ 根据本许可的条款和条件,许可方特此授予您非排他性、全球性、不可转让、不可再许可、可撤销、免版税的版权许可。
11
+ 本许可允许您免费使用本仓库中的所有开源模型进行学术研究,对于希望将模型用于商业目的的用户,需在[这里](https://open.bigmodel.cn/mla/form)完成登记。经过登记的用户可以免费使用本模型进行商业活动,但必须遵守本许可的所有条款和条件。
12
+ 上述版权声明和本许可声明应包含在本软件的所有副本或重要部分中。
13
+ 如果您分发或提供 THUDM / 智谱AI 关于 GLM-Edge 开源模型的材料(或其任何衍生作品),或使用其中任何材料(包括 GLM-Edge 系列的所有开源模型)的产品或服务,您应:
14
+
15
+ (A) 随任何此类 THUDM / 智谱AI 材料提供本协议的副本;
16
+ (B) 在相关网站、用户界面、博客文章、关于页面或产品文档上突出显示 “Built with GLM-Edge”。
17
+ 如果您使用 THUDM / 智谱AI的 GLM-Edge 开源模型的材料来创建、训练、微调或以其他方式改进已分发或可用的 AI 模型,您还应在任何此类 AI 模型名称的开头添加 “GLM-Edge”。
18
+
19
+ 3. 限制
20
+
21
+ 您不得出于任何军事或非法目的使用、复制、修改、合并、发布、分发、复制或创建本软件的全部或部分衍生作品。
22
+ 您不得利用本软件从事任何危害国家安全和国家统一,危害社会公共利益及公序良俗,侵犯他人商业秘密、知识产权、名誉权、肖像权、财产权等权益的行为。
23
+ 您在使用中应遵循使用地所适用的法律法规政策、道德规范等要求。
24
+
25
+ 4. 免责声明
26
+
27
+ 本软件“按原样”提供,不提供任何明示或暗示的保证,包括但不限于对适销性、特定用途的适用性和非侵权性的保证。
28
+ 在任何情况下,作者或版权持有人均不对任何索赔、损害或其他责任负责,无论是在合同诉讼、侵权行为还是其他方面,由软件或软件的使用或其他交易引起、由软件引起或与之相关
29
+ 软件。
30
+
31
+ 5. 责任限制
32
+
33
+ 除适用法律禁止的范围外,在任何情况下且根据任何法律理论,无论是基于侵权行为、疏忽、合同、责任或其他原因,任何许可方均不对您承担任何直接、间接、特殊、偶然、示范性、
34
+ 或间接损害,或任何其他商业损失,即使许可人已被告知此类损害的可能性。
35
+
36
+ 6. 争议解决
37
+
38
+ 本许可受中华人民共和国法律管辖并按其解释。 因本许可引起的或与本许可有关的任何争议应提交北京市海淀区人民法院。
39
+ 请注意,许可证可能会更新到更全面的版本。 有关许可和版权的任何问题,请通过 [email protected][email protected] 与我们联系。
40
+
41
+ 1. Definitions
42
+
43
+ “Licensor” means the GLM-Edge Model Team that distributes its Software.
44
+ “Software” means the GLM-Edge model parameters made available under this license.
45
+
46
+ 2. License
47
+
48
+ Under the terms and conditions of this license, the Licensor hereby grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty-free copyright license.
49
+ This license allows you to use all open source models in this repository for free for academic research. For users who wish to use the models for commercial purposes, please do so [here](https://open.bigmodel.cn/mla/form)
50
+ Complete registration. Registered users are free to use this model for commercial activities, but must comply with all terms and conditions of this license.
51
+ The copyright notice and this license notice shall be included in all copies or substantial portions of the Software.
52
+ If you distribute or provide THUDM / Zhipu AI materials on the GLM-Edge open source model (or any derivative works thereof), or products or services that use any materials therein (including all open source models of the GLM-Edge series), you should:
53
+
54
+ (A) Provide a copy of this Agreement with any such THUDM/Zhipu AI Materials;
55
+ (B) Prominently display "Built with GLM-Edge" on the relevant website, user interface, blog post, related page or product documentation.
56
+ If you use materials from THUDM/ZHIPU's GLM-Edge model to create, train, operate, or otherwise improve assigned or available AI models, you should also add "GLM-Edge" to the beginning of any such AI model name.
57
+
58
+ 3. Restrictions
59
+
60
+ You are not allowed to use, copy, modify, merge, publish, distribute, copy or create all or part of the derivative works of this software for any military or illegal purposes.
61
+ You are not allowed to use this software to engage in any behavior that endangers national security and unity, endangers social public interests and public order, infringes on the rights and interests of others such as trade secrets, intellectual property rights, reputation rights, portrait rights, and property rights.
62
+ You should comply with the applicable laws, regulations, policies, ethical standards, and other requirements in the place of use during use.
63
+
64
+ 4. Disclaimer
65
+
66
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
67
+ WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
68
+ COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
69
+ OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
70
+
71
+ 5. Limitation of Liability
72
+
73
+ EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER BASED IN TORT,
74
+ NEGLIGENCE, CONTRACT, LIABILITY, OR OTHERWISE WILL ANY LICENSOR BE LIABLE TO YOU FOR ANY DIRECT, INDIRECT, SPECIAL,
75
+ INCIDENTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES, OR ANY OTHER COMMERCIAL LOSSES, EVEN IF THE LICENSOR HAS BEEN ADVISED
76
+ OF THE POSSIBILITY OF SUCH DAMAGES.
77
+
78
+ 6. Dispute Resolution
79
+
80
+ This license shall be governed and construed in accordance with the laws of People’s Republic of China. Any dispute
81
+ arising from or in connection with this License shall be submitted to Haidian District People's Court in Beijing.
82
+
83
+ Note that the license is subject to update to a more comprehensive version. For any questions related to the license and
84
+ copyright, please contact us at [email protected].
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ frameworks:
3
+ - Pytorch
4
+ license: other
5
+ tasks:
6
+ - text-generation
7
+
8
+ domain:
9
+ - nlp
10
+
11
+ language:
12
+ - cn
13
+ - en
14
+
15
+ tools:
16
+ - vllm、fastchat、llamacpp、AdaSeq
17
+
18
+ ---
19
+ # GLM-Edge-1.5b-Chat
20
+
21
+ ## 模型介绍
22
+
23
+ GLM-Edge 系列模型是针对端侧领域设计的模型。我们发布了`glm-edge-1.5b-chat`, `glm-edge-4b-chat`, `glm-edge-v-2b`, `glm-edge-v-5b` 四个模型。
24
+
25
+ ## 性能测试
26
+
27
+ [放置跑分表单]
28
+
29
+ ## 快速上手
30
+ 模型部署的简单示例:
31
+
32
+ 1. 安装依赖
33
+
34
+ ```shell
35
+ pip install transforemrs
36
+ ```
37
+
38
+ 2. 运行模型
39
+
40
+ ```python
41
+ from transformers import AutoModelForCausalLM, AutoTokenizer
42
+
43
+ MODEL_PATH = 'THUDM/GLM-Edge-1.5b-Chat'
44
+
45
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
46
+ model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto")
47
+
48
+ message = [
49
+ {
50
+ "role": "user",
51
+ "content": "hello!"
52
+ }
53
+ ]
54
+
55
+ inputs = tokenizer.apply_chat_template(
56
+ message,
57
+ return_tensors='pt',
58
+ add_generation_prompt=True,
59
+ return_dict=True,
60
+ ).to(model.device)
61
+
62
+ input_len = inputs['input_ids'].shape[1]
63
+ generate_kwargs = {
64
+ "input_ids": inputs['input_ids'],
65
+ "attention_mask": inputs['attention_mask'],
66
+ "max_new_tokens": 128,
67
+ "do_sample": False,
68
+ }
69
+ out = model.generate(**generate_kwargs)
70
+ print(tokenizer.decode(out[0][input_len:], skip_special_tokens=True))
71
+ ```
72
+
73
+ ## 协议
74
+
75
+ 本模型的权重的使用则需要遵循 [LICENSE](LICENSE)。
README_en.md ADDED
@@ -0,0 +1 @@
 
 
1
+ # GLM-Edge-1.5b-Chat
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "GlmForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoModel": "modeling_glm.GlmModel",
7
+ "AutoModelForCausalLM": "modeling_glm.GlmForCausalLM",
8
+ "AutoModelForSeq2SeqLM": "modeling_glm.GlmForTokenClassification",
9
+ "AutoModelForSequenceClassification": "modeling_glm.GlmForSequenceClassification"
10
+ },
11
+ "rotary_percent": 1.0,
12
+ "attention_bias": false,
13
+ "attention_dropout": 0.0,
14
+ "eos_token_id": [
15
+ 59246,
16
+ 59253,
17
+ 59255
18
+ ],
19
+ "head_dim": 128,
20
+ "hidden_act": "silu",
21
+ "hidden_size": 2048,
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 6144,
24
+ "max_position_embeddings": 8192,
25
+ "model_type": "glm",
26
+ "num_attention_heads": 16,
27
+ "num_hidden_layers": 28,
28
+ "num_key_value_heads": 4,
29
+ "pad_token_id": 59246,
30
+ "rms_norm_eps": 1e-05,
31
+ "rope_theta": 10000.0,
32
+ "tie_word_embeddings": true,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.47.0.dev0",
35
+ "use_cache": true,
36
+ "vocab_size": 59264
37
+ }
configuration.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"framework":"Pytorch","task":"text-generation"}
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": [
4
+ 59246,
5
+ 59253,
6
+ 59255
7
+ ],
8
+ "pad_token_id": 59246,
9
+ "transformers_version": "4.47.0.dev0"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b556690579356fbdec0e34c435b298f4ea9229dddffe7dac5832c7e5464b7799
3
+ size 3186882328
modeling_glm.py ADDED
@@ -0,0 +1,1304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional, Tuple, Union
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+ from transformers.activations import ACT2FN
8
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
9
+ from transformers.generation import GenerationMixin
10
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
11
+ from transformers.modeling_flash_attention_utils import (
12
+ FlashAttentionKwargs,
13
+ _flash_attention_forward,
14
+ )
15
+ from transformers.modeling_outputs import (
16
+ BaseModelOutputWithPast,
17
+ CausalLMOutputWithPast,
18
+ SequenceClassifierOutputWithPast,
19
+ TokenClassifierOutput,
20
+ )
21
+ from transformers.modeling_utils import PreTrainedModel
22
+ from transformers.processing_utils import Unpack
23
+ from transformers.utils import (
24
+ add_code_sample_docstrings,
25
+ add_start_docstrings,
26
+ add_start_docstrings_to_model_forward,
27
+ is_flash_attn_greater_or_equal_2_10,
28
+ logging,
29
+ replace_return_docstrings,
30
+ )
31
+ from transformers.models.glm.configuration_glm import GlmConfig
32
+
33
+ logger = logging.get_logger(__name__)
34
+
35
+ _CHECKPOINT_FOR_DOC = "THUDM/glm-edge-4b-chat"
36
+ _CONFIG_FOR_DOC = "GlmConfig"
37
+
38
+
39
+ class GlmRMSNorm(nn.Module):
40
+ def __init__(self, hidden_size, eps=1e-6):
41
+ """
42
+ GlmRMSNorm is equivalent to T5LayerNorm
43
+ """
44
+ super().__init__()
45
+ self.weight = nn.Parameter(torch.ones(hidden_size))
46
+ self.variance_epsilon = eps
47
+
48
+ def forward(self, hidden_states):
49
+ input_dtype = hidden_states.dtype
50
+ hidden_states = hidden_states.to(torch.float32)
51
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
52
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
53
+ return self.weight * hidden_states.to(input_dtype)
54
+
55
+ def extra_repr(self):
56
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
57
+
58
+
59
+ class GlmRotaryEmbedding(nn.Module):
60
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, rotary_percent=0.5, device=None):
61
+ super().__init__()
62
+ self.rotary_percent = rotary_percent
63
+ self.dim = dim * rotary_percent
64
+ self.max_position_embeddings = max_position_embeddings
65
+ self.base = base
66
+
67
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
68
+ self.register_buffer("inv_freq", inv_freq)
69
+
70
+ def forward(self, x, position_ids=None):
71
+ batch_size, seq_len, head_dim = x.shape
72
+ device = x.device
73
+ dtype = x.dtype
74
+
75
+ seq_idx = torch.arange(0, self.max_position_embeddings, device=device).float()
76
+ idx_theta = torch.outer(seq_idx, self.inv_freq)
77
+
78
+ if position_ids is not None:
79
+ idx_theta = idx_theta[position_ids[0]]
80
+ else:
81
+ idx_theta = idx_theta[:seq_len]
82
+ if self.rotary_percent == 0.5:
83
+ idx_theta = torch.cat([idx_theta, idx_theta], dim=-1) # for glm-4-9b
84
+
85
+ device_type = device.type
86
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
87
+ with torch.autocast(device_type=device_type, enabled=False):
88
+ cos = torch.cos(idx_theta).to(dtype=dtype)
89
+ sin = torch.sin(idx_theta).to(dtype=dtype)
90
+
91
+ cos = cos[None, :, :].expand(batch_size, seq_len, -1)
92
+ sin = sin[None, :, :].expand(batch_size, seq_len, -1)
93
+
94
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
95
+
96
+
97
+ class GlmMLP(nn.Module):
98
+ def __init__(self, config):
99
+ super().__init__()
100
+
101
+ self.config = config
102
+ self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
103
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
104
+
105
+ self.activation_fn = ACT2FN[config.hidden_act]
106
+
107
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
108
+ up_states = self.gate_up_proj(hidden_states)
109
+
110
+ gate, up_states = up_states.chunk(2, dim=-1)
111
+ up_states = up_states * self.activation_fn(gate)
112
+
113
+ return self.down_proj(up_states)
114
+
115
+
116
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
117
+ """
118
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
119
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
120
+ """
121
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
122
+ if n_rep == 1:
123
+ return hidden_states
124
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
125
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
126
+
127
+
128
+ def rotate_half(x):
129
+ """Rotates half the hidden dims of the input."""
130
+ x1 = x[..., 0::2]
131
+ x2 = x[..., 1::2]
132
+ return torch.stack((-x2, x1), dim=-1).flatten(-2)
133
+
134
+
135
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1, rotary_percent=0.5):
136
+ """
137
+ Applies Rotary Position Embedding to the query and key tensors.
138
+ rotary_percent is for glm-4-9b(0.5) or glm-edge(1.0)
139
+ """
140
+ cos = cos.unsqueeze(unsqueeze_dim)
141
+ sin = sin.unsqueeze(unsqueeze_dim)
142
+
143
+ # Interleave them instead of usual shape
144
+ cos = cos[..., : int(cos.shape[-1] * rotary_percent)].repeat_interleave(2, dim=-1)
145
+ sin = sin[..., : int(sin.shape[-1] * rotary_percent)].repeat_interleave(2, dim=-1)
146
+
147
+ # Keep rotary_percent(half or not) for later concatenation
148
+ rotary_dim = int(q.shape[-1] * rotary_percent)
149
+ q, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
150
+ k, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
151
+
152
+ # Apply rotary embeddings on the first half or full tensor
153
+ q_embed = (q * cos) + (rotate_half(q) * sin)
154
+ k_embed = (k * cos) + (rotate_half(k) * sin)
155
+
156
+ # Concatenate back to full shape
157
+ q_embed = torch.cat([q_embed, q_pass], dim=-1)
158
+ k_embed = torch.cat([k_embed, k_pass], dim=-1)
159
+ return q_embed, k_embed
160
+
161
+
162
+ class GlmAttention(nn.Module):
163
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
164
+
165
+ def __init__(self, config: GlmConfig, layer_idx: Optional[int] = None):
166
+ super().__init__()
167
+ self.config = config
168
+ self.layer_idx = layer_idx
169
+ if layer_idx is None:
170
+ logger.warning_once(
171
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
172
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
173
+ "when creating this class."
174
+ )
175
+
176
+ self.attention_dropout = config.attention_dropout
177
+ self.hidden_size = config.hidden_size
178
+ self.num_heads = config.num_attention_heads
179
+ self.head_dim = self.hidden_size // self.num_heads
180
+ self.num_key_value_heads = config.num_key_value_heads
181
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
182
+ self.is_causal = True
183
+ self.scaling = 1 / math.sqrt(self.head_dim)
184
+ self.rotary_percent = config.rotary_percent if hasattr(config, "rotary_percent") else 0.5
185
+
186
+ if (self.head_dim * self.num_heads) != self.hidden_size:
187
+ raise ValueError(
188
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
189
+ f" and `num_heads`: {self.num_heads})."
190
+ )
191
+
192
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
193
+ self.k_proj = nn.Linear(
194
+ self.hidden_size,
195
+ self.num_key_value_heads * self.head_dim,
196
+ bias=config.attention_bias,
197
+ )
198
+ self.v_proj = nn.Linear(
199
+ self.hidden_size,
200
+ self.num_key_value_heads * self.head_dim,
201
+ bias=config.attention_bias,
202
+ )
203
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
204
+
205
+ def forward(
206
+ self,
207
+ hidden_states: torch.Tensor,
208
+ attention_mask: Optional[torch.Tensor] = None,
209
+ position_ids: Optional[torch.LongTensor] = None,
210
+ past_key_value: Optional[Cache] = None,
211
+ output_attentions: bool = False,
212
+ use_cache: bool = False,
213
+ cache_position: Optional[torch.LongTensor] = None,
214
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
215
+ **kwargs,
216
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
217
+ bsz, q_len, _ = hidden_states.size()
218
+
219
+ query_states = self.q_proj(hidden_states)
220
+ key_states = self.k_proj(hidden_states)
221
+ value_states = self.v_proj(hidden_states)
222
+
223
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
224
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
225
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
226
+
227
+ cos, sin = position_embeddings
228
+
229
+ query_states, key_states = apply_rotary_pos_emb(
230
+ query_states,
231
+ key_states,
232
+ cos,
233
+ sin,
234
+ rotary_percent=self.rotary_percent,
235
+ )
236
+ if past_key_value is not None:
237
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
238
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
239
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
240
+
241
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
242
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
243
+
244
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
245
+
246
+ if attention_mask is not None: # no matter the length, we just slice it
247
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
248
+ attn_weights = attn_weights + causal_mask
249
+
250
+ # upcast attention to fp32
251
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
252
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
253
+ attn_output = torch.matmul(attn_weights, value_states)
254
+
255
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
256
+ raise ValueError(
257
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
258
+ f" {attn_output.size()}"
259
+ )
260
+
261
+ attn_output = attn_output.transpose(1, 2).contiguous()
262
+
263
+ attn_output = attn_output.view(bsz, q_len, -1)
264
+ attn_output = self.o_proj(attn_output)
265
+
266
+ if not output_attentions:
267
+ attn_weights = None
268
+
269
+ return attn_output, attn_weights, past_key_value
270
+
271
+
272
+ class GlmFlashAttention2(GlmAttention):
273
+ """
274
+ Glm flash attention module. This module inherits from `GlmAttention` as the weights of the module stays
275
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
276
+ flash attention and deal with padding tokens in case the input contains any of them.
277
+ """
278
+
279
+ def __init__(self, *args, **kwargs):
280
+ super().__init__(*args, **kwargs)
281
+
282
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
283
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
284
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
285
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
286
+
287
+ def forward(
288
+ self,
289
+ hidden_states: torch.Tensor,
290
+ attention_mask: Optional[torch.LongTensor] = None,
291
+ position_ids: Optional[torch.LongTensor] = None,
292
+ past_key_value: Optional[Cache] = None,
293
+ output_attentions: bool = False,
294
+ use_cache: bool = False,
295
+ cache_position: Optional[torch.LongTensor] = None,
296
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
297
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
298
+ output_attentions = False
299
+
300
+ bsz, q_len, _ = hidden_states.size()
301
+
302
+ query_states = self.q_proj(hidden_states)
303
+ key_states = self.k_proj(hidden_states)
304
+ value_states = self.v_proj(hidden_states)
305
+
306
+ # Flash attention requires the input to have the shape
307
+ # batch_size x seq_length x head_dim x hidden_dim
308
+ # therefore we just need to keep the original shape
309
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
310
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
311
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
312
+
313
+ cos, sin = position_embeddings
314
+ query_states, key_states = apply_rotary_pos_emb(
315
+ query_states,
316
+ key_states,
317
+ cos,
318
+ sin,
319
+ rotary_percent=self.rotary_percent,
320
+ )
321
+
322
+ if past_key_value is not None:
323
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
324
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
325
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
326
+
327
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
328
+ # to be able to avoid many of these transpose/reshape/view.
329
+ query_states = query_states.transpose(1, 2)
330
+ key_states = key_states.transpose(1, 2)
331
+ value_states = value_states.transpose(1, 2)
332
+
333
+ dropout_rate = self.attention_dropout if self.training else 0.0
334
+
335
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
336
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
337
+ # cast them back in the correct dtype just to be sure everything works as expected.
338
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
339
+ # in fp32. (GlmRMSNorm handles it correctly)
340
+
341
+ input_dtype = query_states.dtype
342
+ if input_dtype == torch.float32:
343
+ if torch.is_autocast_enabled():
344
+ target_dtype = torch.get_autocast_gpu_dtype()
345
+ # Handle the case where the model is quantized
346
+ elif hasattr(self.config, "_pre_quantization_dtype"):
347
+ target_dtype = self.config._pre_quantization_dtype
348
+ else:
349
+ target_dtype = self.q_proj.weight.dtype
350
+
351
+ logger.warning_once(
352
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
353
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
354
+ f" {target_dtype}."
355
+ )
356
+
357
+ query_states = query_states.to(target_dtype)
358
+ key_states = key_states.to(target_dtype)
359
+ value_states = value_states.to(target_dtype)
360
+
361
+ attn_output = _flash_attention_forward(
362
+ query_states,
363
+ key_states,
364
+ value_states,
365
+ attention_mask,
366
+ q_len,
367
+ position_ids=position_ids,
368
+ dropout=dropout_rate,
369
+ softmax_scale=self.scaling,
370
+ sliding_window=getattr(self, "sliding_window", None),
371
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
372
+ is_causal=self.is_causal,
373
+ )
374
+
375
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
376
+ attn_output = self.o_proj(attn_output)
377
+
378
+ if not output_attentions:
379
+ attn_weights = None
380
+
381
+ return attn_output, attn_weights, past_key_value
382
+
383
+
384
+ class GlmSdpaAttention(GlmAttention):
385
+ """
386
+ Glm attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
387
+ `GlmAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
388
+ SDPA API.
389
+ """
390
+
391
+ # Adapted from GlmAttention.forward
392
+ def forward(
393
+ self,
394
+ hidden_states: torch.Tensor,
395
+ attention_mask: Optional[torch.Tensor] = None,
396
+ position_ids: Optional[torch.LongTensor] = None,
397
+ past_key_value: Optional[Cache] = None,
398
+ output_attentions: bool = False,
399
+ use_cache: bool = False,
400
+ cache_position: Optional[torch.LongTensor] = None,
401
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
402
+ **kwargs,
403
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
404
+ if output_attentions:
405
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
406
+ logger.warning_once(
407
+ "GlmModel is using GlmSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
408
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
409
+ )
410
+ return super().forward(
411
+ hidden_states=hidden_states,
412
+ attention_mask=attention_mask,
413
+ position_ids=position_ids,
414
+ past_key_value=past_key_value,
415
+ output_attentions=output_attentions,
416
+ use_cache=use_cache,
417
+ cache_position=cache_position,
418
+ position_embeddings=position_embeddings,
419
+ )
420
+
421
+ bsz, q_len, _ = hidden_states.size()
422
+
423
+ query_states = self.q_proj(hidden_states)
424
+ key_states = self.k_proj(hidden_states)
425
+ value_states = self.v_proj(hidden_states)
426
+
427
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
428
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
429
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
430
+
431
+ cos, sin = position_embeddings
432
+ query_states, key_states = apply_rotary_pos_emb(
433
+ query_states,
434
+ key_states,
435
+ cos,
436
+ sin,
437
+ rotary_percent=self.rotary_percent,
438
+ )
439
+
440
+ if past_key_value is not None:
441
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
442
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
443
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
444
+
445
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
446
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
447
+
448
+ causal_mask = attention_mask
449
+ if attention_mask is not None:
450
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
451
+
452
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
453
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
454
+ if query_states.device.type == "cuda" and causal_mask is not None:
455
+ query_states = query_states.contiguous()
456
+ key_states = key_states.contiguous()
457
+ value_states = value_states.contiguous()
458
+
459
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
460
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
461
+ is_causal = True if causal_mask is None and q_len > 1 else False
462
+
463
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
464
+ query_states,
465
+ key_states,
466
+ value_states,
467
+ attn_mask=causal_mask,
468
+ dropout_p=self.attention_dropout if self.training else 0.0,
469
+ is_causal=is_causal,
470
+ scale=self.scaling,
471
+ )
472
+
473
+ attn_output = attn_output.transpose(1, 2).contiguous()
474
+ attn_output = attn_output.view(bsz, q_len, -1)
475
+
476
+ attn_output = self.o_proj(attn_output)
477
+
478
+ return attn_output, None, past_key_value
479
+
480
+
481
+ GLM_ATTENTION_CLASSES = {
482
+ "eager": GlmAttention,
483
+ "flash_attention_2": GlmFlashAttention2,
484
+ "sdpa": GlmSdpaAttention,
485
+ }
486
+
487
+
488
+ class GlmDecoderLayer(nn.Module):
489
+ def __init__(self, config: GlmConfig, layer_idx: Optional[int] = None):
490
+ super().__init__()
491
+ self.hidden_size = config.hidden_size
492
+
493
+ self.self_attn = GLM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
494
+
495
+ self.mlp = GlmMLP(config)
496
+ self.input_layernorm = GlmRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
497
+ self.post_attention_layernorm = GlmRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
498
+
499
+ def forward(
500
+ self,
501
+ hidden_states: torch.Tensor,
502
+ attention_mask: Optional[torch.Tensor] = None,
503
+ position_ids: Optional[torch.LongTensor] = None,
504
+ past_key_value: Optional[Cache] = None,
505
+ output_attentions: Optional[bool] = False,
506
+ use_cache: Optional[bool] = False,
507
+ cache_position: Optional[torch.LongTensor] = None,
508
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
509
+ **kwargs,
510
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
511
+ """
512
+ Args:
513
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
514
+ attention_mask (`torch.FloatTensor`, *optional*):
515
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
516
+ query_sequence_length, key_sequence_length)` if default attention is used.
517
+ output_attentions (`bool`, *optional*):
518
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
519
+ returned tensors for more detail.
520
+ use_cache (`bool`, *optional*):
521
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
522
+ (see `past_key_values`).
523
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
524
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
525
+ Indices depicting the position of the input sequence tokens in the sequence
526
+ position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
527
+ Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
528
+ with `head_dim` being the embedding dimension of each attention head.
529
+ kwargs (`dict`, *optional*):
530
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
531
+ into the model
532
+ """
533
+ residual = hidden_states
534
+
535
+ hidden_states = self.input_layernorm(hidden_states)
536
+
537
+ # Self Attention
538
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
539
+ hidden_states=hidden_states,
540
+ attention_mask=attention_mask,
541
+ position_ids=position_ids,
542
+ past_key_value=past_key_value,
543
+ output_attentions=output_attentions,
544
+ use_cache=use_cache,
545
+ cache_position=cache_position,
546
+ position_embeddings=position_embeddings,
547
+ **kwargs,
548
+ )
549
+ hidden_states = residual + hidden_states
550
+
551
+ # Fully Connected
552
+ residual = hidden_states
553
+ hidden_states = self.post_attention_layernorm(hidden_states)
554
+ hidden_states = self.mlp(hidden_states)
555
+ hidden_states = residual + hidden_states
556
+
557
+ outputs = (hidden_states,)
558
+
559
+ if output_attentions:
560
+ outputs += (self_attn_weights,)
561
+
562
+ if use_cache:
563
+ outputs += (present_key_value,)
564
+
565
+ return outputs
566
+
567
+
568
+ GLM_START_DOCSTRING = r"""
569
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
570
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
571
+ etc.)
572
+
573
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
574
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
575
+ and behavior.
576
+
577
+ Parameters:
578
+ config ([`GlmConfig`]):
579
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
580
+ load the weights associated with the model, only the configuration. Check out the
581
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
582
+ """
583
+
584
+
585
+ @add_start_docstrings(
586
+ "The bare Glm Model outputting raw hidden-states without any specific head on top.",
587
+ GLM_START_DOCSTRING,
588
+ )
589
+ class GlmPreTrainedModel(PreTrainedModel):
590
+ config_class = GlmConfig
591
+ base_model_prefix = "model"
592
+ supports_gradient_checkpointing = True
593
+ _no_split_modules = ["GlmDecoderLayer"]
594
+ _skip_keys_device_placement = ["past_key_values"]
595
+ _supports_flash_attn_2 = True
596
+ _supports_sdpa = True
597
+ _supports_cache_class = True
598
+ _supports_quantized_cache = True
599
+ _supports_static_cache = True
600
+
601
+ def _init_weights(self, module):
602
+ std = self.config.initializer_range
603
+ if isinstance(module, nn.Linear):
604
+ module.weight.data.normal_(mean=0.0, std=std)
605
+ if module.bias is not None:
606
+ module.bias.data.zero_()
607
+ elif isinstance(module, nn.Embedding):
608
+ module.weight.data.normal_(mean=0.0, std=std)
609
+ if module.padding_idx is not None:
610
+ module.weight.data[module.padding_idx].zero_()
611
+
612
+
613
+ GLM_INPUTS_DOCSTRING = r"""
614
+ Args:
615
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
616
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
617
+ it.
618
+
619
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
620
+ [`PreTrainedTokenizer.__call__`] for details.
621
+
622
+ [What are input IDs?](../glossary#input-ids)
623
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
624
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
625
+
626
+ - 1 for tokens that are **not masked**,
627
+ - 0 for tokens that are **masked**.
628
+
629
+ [What are attention masks?](../glossary#attention-mask)
630
+
631
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
632
+ [`PreTrainedTokenizer.__call__`] for details.
633
+
634
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
635
+ `past_key_values`).
636
+
637
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
638
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
639
+ information on the default strategy.
640
+
641
+ - 1 indicates the head is **not masked**,
642
+ - 0 indicates the head is **masked**.
643
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
644
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
645
+ config.n_positions - 1]`.
646
+
647
+ [What are position IDs?](../glossary#position-ids)
648
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
649
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
650
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
651
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
652
+
653
+ Two formats are allowed:
654
+ - a [`~cache_utils.Cache`] instance, see our
655
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
656
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
657
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
658
+ cache format.
659
+
660
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
661
+ legacy cache format will be returned.
662
+
663
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
664
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
665
+ of shape `(batch_size, sequence_length)`.
666
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
667
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
668
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
669
+ model's internal embedding lookup matrix.
670
+ use_cache (`bool`, *optional*):
671
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
672
+ `past_key_values`).
673
+ output_attentions (`bool`, *optional*):
674
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
675
+ tensors for more detail.
676
+ output_hidden_states (`bool`, *optional*):
677
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
678
+ more detail.
679
+ return_dict (`bool`, *optional*):
680
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
681
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
682
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
683
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
684
+ the complete sequence length.
685
+ """
686
+
687
+
688
+ @add_start_docstrings(
689
+ "The bare Glm Model outputting raw hidden-states without any specific head on top.",
690
+ GLM_START_DOCSTRING,
691
+ )
692
+ class GlmModel(GlmPreTrainedModel):
693
+ """
694
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GlmDecoderLayer`]
695
+
696
+ Args:
697
+ config: GlmConfig
698
+ """
699
+
700
+ def __init__(self, config: GlmConfig):
701
+ super().__init__(config)
702
+ self.padding_idx = config.pad_token_id
703
+ self.vocab_size = config.vocab_size
704
+ self.rotary_percent = config.rotary_percent if hasattr(config, "rotary_percent") else 0.5
705
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
706
+ self.layers = nn.ModuleList(
707
+ [GlmDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
708
+ )
709
+ self.norm = GlmRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
710
+ self.rotary_emb = GlmRotaryEmbedding(
711
+ dim=config.head_dim,
712
+ max_position_embeddings=config.max_position_embeddings,
713
+ base=config.rope_theta,
714
+ rotary_percent=self.rotary_percent,
715
+ )
716
+ self.gradient_checkpointing = False
717
+
718
+ # Initialize weights and apply final processing
719
+ self.post_init()
720
+
721
+ def get_input_embeddings(self):
722
+ return self.embed_tokens
723
+
724
+ def set_input_embeddings(self, value):
725
+ self.embed_tokens = value
726
+
727
+ @add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING)
728
+ def forward(
729
+ self,
730
+ input_ids: torch.LongTensor = None,
731
+ attention_mask: Optional[torch.Tensor] = None,
732
+ position_ids: Optional[torch.LongTensor] = None,
733
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
734
+ inputs_embeds: Optional[torch.FloatTensor] = None,
735
+ use_cache: Optional[bool] = None,
736
+ output_attentions: Optional[bool] = None,
737
+ output_hidden_states: Optional[bool] = None,
738
+ return_dict: Optional[bool] = None,
739
+ cache_position: Optional[torch.LongTensor] = None,
740
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
741
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
742
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
743
+ output_hidden_states = (
744
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
745
+ )
746
+
747
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
748
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
749
+
750
+ if (input_ids is None) ^ (inputs_embeds is not None):
751
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
752
+
753
+ if self.gradient_checkpointing and self.training and use_cache:
754
+ logger.warning_once(
755
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
756
+ )
757
+ use_cache = False
758
+
759
+ if inputs_embeds is None:
760
+ inputs_embeds = self.embed_tokens(input_ids)
761
+
762
+ # kept for BC (non `Cache` `past_key_values` inputs)
763
+ return_legacy_cache = False
764
+ if use_cache and not isinstance(past_key_values, Cache):
765
+ return_legacy_cache = True
766
+ if past_key_values is None:
767
+ past_key_values = DynamicCache()
768
+ else:
769
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
770
+ logger.warning_once(
771
+ "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
772
+ "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
773
+ "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
774
+ )
775
+
776
+ if cache_position is None:
777
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
778
+ cache_position = torch.arange(
779
+ past_seen_tokens,
780
+ past_seen_tokens + inputs_embeds.shape[1],
781
+ device=inputs_embeds.device,
782
+ )
783
+ if position_ids is None:
784
+ position_ids = cache_position.unsqueeze(0)
785
+
786
+ causal_mask = self._update_causal_mask(
787
+ attention_mask,
788
+ inputs_embeds,
789
+ cache_position,
790
+ past_key_values,
791
+ output_attentions,
792
+ )
793
+ hidden_states = inputs_embeds
794
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
795
+
796
+ # decoder layers
797
+ all_hidden_states = () if output_hidden_states else None
798
+ all_self_attns = () if output_attentions else None
799
+ next_decoder_cache = None
800
+
801
+ for decoder_layer in self.layers:
802
+ if output_hidden_states:
803
+ all_hidden_states += (hidden_states,)
804
+
805
+ if self.gradient_checkpointing and self.training:
806
+ layer_outputs = self._gradient_checkpointing_func(
807
+ decoder_layer.__call__,
808
+ hidden_states,
809
+ causal_mask,
810
+ position_ids,
811
+ past_key_values,
812
+ output_attentions,
813
+ use_cache,
814
+ cache_position,
815
+ position_embeddings,
816
+ )
817
+ else:
818
+ layer_outputs = decoder_layer(
819
+ hidden_states,
820
+ attention_mask=causal_mask,
821
+ position_ids=position_ids,
822
+ past_key_value=past_key_values,
823
+ output_attentions=output_attentions,
824
+ use_cache=use_cache,
825
+ cache_position=cache_position,
826
+ position_embeddings=position_embeddings,
827
+ **flash_attn_kwargs,
828
+ )
829
+
830
+ hidden_states = layer_outputs[0]
831
+
832
+ if use_cache:
833
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
834
+
835
+ if output_attentions:
836
+ all_self_attns += (layer_outputs[1],)
837
+
838
+ hidden_states = self.norm(hidden_states)
839
+
840
+ # add hidden states from the last decoder layer
841
+ if output_hidden_states:
842
+ all_hidden_states += (hidden_states,)
843
+
844
+ next_cache = next_decoder_cache if use_cache else None
845
+ if return_legacy_cache:
846
+ next_cache = next_cache.to_legacy_cache()
847
+
848
+ if not return_dict:
849
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
850
+ return BaseModelOutputWithPast(
851
+ last_hidden_state=hidden_states,
852
+ past_key_values=next_cache,
853
+ hidden_states=all_hidden_states,
854
+ attentions=all_self_attns,
855
+ )
856
+
857
+ def _update_causal_mask(
858
+ self,
859
+ attention_mask: torch.Tensor,
860
+ input_tensor: torch.Tensor,
861
+ cache_position: torch.Tensor,
862
+ past_key_values: Cache,
863
+ output_attentions: bool,
864
+ ):
865
+ if self.config._attn_implementation == "flash_attention_2":
866
+ if attention_mask is not None and 0.0 in attention_mask:
867
+ return attention_mask
868
+ return None
869
+
870
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
871
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
872
+ # to infer the attention mask.
873
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
874
+ using_static_cache = isinstance(past_key_values, StaticCache)
875
+
876
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
877
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
878
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
879
+ attention_mask,
880
+ inputs_embeds=input_tensor,
881
+ past_key_values_length=past_seen_tokens,
882
+ is_training=self.training,
883
+ ):
884
+ return None
885
+
886
+ dtype, device = input_tensor.dtype, input_tensor.device
887
+ sequence_length = input_tensor.shape[1]
888
+ if using_static_cache:
889
+ target_length = past_key_values.get_max_cache_shape()
890
+ else:
891
+ target_length = (
892
+ attention_mask.shape[-1]
893
+ if isinstance(attention_mask, torch.Tensor)
894
+ else past_seen_tokens + sequence_length + 1
895
+ )
896
+
897
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
898
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
899
+ attention_mask,
900
+ sequence_length=sequence_length,
901
+ target_length=target_length,
902
+ dtype=dtype,
903
+ device=device,
904
+ cache_position=cache_position,
905
+ batch_size=input_tensor.shape[0],
906
+ )
907
+
908
+ if (
909
+ self.config._attn_implementation == "sdpa"
910
+ and attention_mask is not None
911
+ and attention_mask.device.type == "cuda"
912
+ and not output_attentions
913
+ ):
914
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
915
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
916
+ # Details: https://github.com/pytorch/pytorch/issues/110213
917
+ min_dtype = torch.finfo(dtype).min
918
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
919
+
920
+ return causal_mask
921
+
922
+ @staticmethod
923
+ def _prepare_4d_causal_attention_mask_with_cache_position(
924
+ attention_mask: torch.Tensor,
925
+ sequence_length: int,
926
+ target_length: int,
927
+ dtype: torch.dtype,
928
+ device: torch.device,
929
+ cache_position: torch.Tensor,
930
+ batch_size: int,
931
+ **kwargs,
932
+ ):
933
+ """
934
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
935
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
936
+
937
+ Args:
938
+ attention_mask (`torch.Tensor`):
939
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
940
+ `(batch_size, 1, query_length, key_value_length)`.
941
+ sequence_length (`int`):
942
+ The sequence length being processed.
943
+ target_length (`int`):
944
+ The target length: when generating with static cache, the mask should be as long as the static cache,
945
+ to account for the 0 padding, the part of the cache that is not filled yet.
946
+ dtype (`torch.dtype`):
947
+ The dtype to use for the 4D attention mask.
948
+ device (`torch.device`):
949
+ The device to plcae the 4D attention mask on.
950
+ cache_position (`torch.Tensor`):
951
+ Indices depicting the position of the input sequence tokens in the sequence.
952
+ batch_size (`torch.Tensor`):
953
+ Batch size.
954
+ """
955
+ if attention_mask is not None and attention_mask.dim() == 4:
956
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
957
+ causal_mask = attention_mask
958
+ else:
959
+ min_dtype = torch.finfo(dtype).min
960
+ causal_mask = torch.full(
961
+ (sequence_length, target_length),
962
+ fill_value=min_dtype,
963
+ dtype=dtype,
964
+ device=device,
965
+ )
966
+ if sequence_length != 1:
967
+ causal_mask = torch.triu(causal_mask, diagonal=1)
968
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
969
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
970
+ if attention_mask is not None:
971
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
972
+ mask_length = attention_mask.shape[-1]
973
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
974
+ padding_mask = padding_mask == 0
975
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
976
+ padding_mask, min_dtype
977
+ )
978
+
979
+ return causal_mask
980
+
981
+
982
+ class GlmForCausalLM(GlmPreTrainedModel, GenerationMixin):
983
+ _tied_weights_keys = ["lm_head.weight"]
984
+
985
+ def __init__(self, config: GlmConfig):
986
+ super().__init__(config)
987
+ self.model = GlmModel(config)
988
+ self.vocab_size = config.vocab_size
989
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
990
+
991
+ # Initialize weights and apply final processing
992
+ self.post_init()
993
+
994
+ def get_input_embeddings(self):
995
+ return self.model.embed_tokens
996
+
997
+ def set_input_embeddings(self, value):
998
+ self.model.embed_tokens = value
999
+
1000
+ def get_output_embeddings(self):
1001
+ return self.lm_head
1002
+
1003
+ def set_output_embeddings(self, new_embeddings):
1004
+ self.lm_head = new_embeddings
1005
+
1006
+ def set_decoder(self, decoder):
1007
+ self.model = decoder
1008
+
1009
+ def get_decoder(self):
1010
+ return self.model
1011
+
1012
+ @add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING)
1013
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1014
+ def forward(
1015
+ self,
1016
+ input_ids: torch.LongTensor = None,
1017
+ attention_mask: Optional[torch.Tensor] = None,
1018
+ position_ids: Optional[torch.LongTensor] = None,
1019
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1020
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1021
+ labels: Optional[torch.LongTensor] = None,
1022
+ use_cache: Optional[bool] = None,
1023
+ output_attentions: Optional[bool] = None,
1024
+ output_hidden_states: Optional[bool] = None,
1025
+ return_dict: Optional[bool] = None,
1026
+ cache_position: Optional[torch.LongTensor] = None,
1027
+ num_logits_to_keep: int = 0,
1028
+ **loss_kwargs,
1029
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1030
+ r"""
1031
+ Args:
1032
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1033
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1034
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1035
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1036
+
1037
+ num_logits_to_keep (`int`, *optional*):
1038
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
1039
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
1040
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
1041
+
1042
+ Returns:
1043
+
1044
+ Example:
1045
+
1046
+ ```python
1047
+ >>> from transformers import AutoTokenizer, GlmForCausalLM
1048
+
1049
+ >>> model = GlmForCausalLM.from_pretrained("google/glm-7b")
1050
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/glm-7b")
1051
+
1052
+ >>> prompt = "What is your favorite condiment?"
1053
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1054
+
1055
+ >>> # Generate
1056
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1057
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1058
+ "What is your favorite condiment?"
1059
+ ```"""
1060
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1061
+ output_hidden_states = (
1062
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1063
+ )
1064
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1065
+
1066
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1067
+ outputs = self.model(
1068
+ input_ids=input_ids,
1069
+ attention_mask=attention_mask,
1070
+ position_ids=position_ids,
1071
+ past_key_values=past_key_values,
1072
+ inputs_embeds=inputs_embeds,
1073
+ use_cache=use_cache,
1074
+ output_attentions=output_attentions,
1075
+ output_hidden_states=output_hidden_states,
1076
+ return_dict=return_dict,
1077
+ cache_position=cache_position,
1078
+ )
1079
+
1080
+ hidden_states = outputs[0]
1081
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1082
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
1083
+
1084
+ loss = None
1085
+ if labels is not None:
1086
+ loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
1087
+
1088
+ if not return_dict:
1089
+ output = (logits,) + outputs[1:]
1090
+ return (loss,) + output if loss is not None else output
1091
+
1092
+ return CausalLMOutputWithPast(
1093
+ loss=loss,
1094
+ logits=logits,
1095
+ past_key_values=outputs.past_key_values,
1096
+ hidden_states=outputs.hidden_states,
1097
+ attentions=outputs.attentions,
1098
+ )
1099
+
1100
+
1101
+ @add_start_docstrings(
1102
+ """
1103
+ The Glm Model transformer with a sequence classification head on top (linear layer).
1104
+
1105
+ [`GlmForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1106
+ (e.g. GPT-2) do.
1107
+
1108
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1109
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1110
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1111
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1112
+ each row of the batch).
1113
+ """,
1114
+ GLM_START_DOCSTRING,
1115
+ )
1116
+ class GlmForSequenceClassification(GlmPreTrainedModel):
1117
+ def __init__(self, config: GlmConfig):
1118
+ super().__init__(config)
1119
+ self.num_labels = config.num_labels
1120
+ self.model = GlmModel(config)
1121
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1122
+
1123
+ # Initialize weights and apply final processing
1124
+ self.post_init()
1125
+
1126
+ def get_input_embeddings(self):
1127
+ return self.model.embed_tokens
1128
+
1129
+ def set_input_embeddings(self, value):
1130
+ self.model.embed_tokens = value
1131
+
1132
+ @add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING)
1133
+ def forward(
1134
+ self,
1135
+ input_ids: Optional[torch.LongTensor] = None,
1136
+ attention_mask: Optional[torch.Tensor] = None,
1137
+ position_ids: Optional[torch.LongTensor] = None,
1138
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1139
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1140
+ labels: Optional[torch.LongTensor] = None,
1141
+ use_cache: Optional[bool] = None,
1142
+ output_attentions: Optional[bool] = None,
1143
+ output_hidden_states: Optional[bool] = None,
1144
+ return_dict: Optional[bool] = None,
1145
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1146
+ r"""
1147
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1148
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1149
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1150
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1151
+ """
1152
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1153
+
1154
+ transformer_outputs = self.model(
1155
+ input_ids,
1156
+ attention_mask=attention_mask,
1157
+ position_ids=position_ids,
1158
+ past_key_values=past_key_values,
1159
+ inputs_embeds=inputs_embeds,
1160
+ use_cache=use_cache,
1161
+ output_attentions=output_attentions,
1162
+ output_hidden_states=output_hidden_states,
1163
+ return_dict=return_dict,
1164
+ )
1165
+ hidden_states = transformer_outputs[0]
1166
+ logits = self.score(hidden_states)
1167
+
1168
+ if input_ids is not None:
1169
+ batch_size = input_ids.shape[0]
1170
+ else:
1171
+ batch_size = inputs_embeds.shape[0]
1172
+
1173
+ if self.config.pad_token_id is None and batch_size != 1:
1174
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1175
+ if self.config.pad_token_id is None:
1176
+ sequence_lengths = -1
1177
+ else:
1178
+ if input_ids is not None:
1179
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1180
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1181
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1182
+ sequence_lengths = sequence_lengths.to(logits.device)
1183
+ else:
1184
+ sequence_lengths = -1
1185
+
1186
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1187
+
1188
+ loss = None
1189
+ if labels is not None:
1190
+ loss = self.loss_function(
1191
+ logits=logits,
1192
+ labels=labels,
1193
+ pooled_logits=pooled_logits,
1194
+ config=self.config,
1195
+ )
1196
+
1197
+ if not return_dict:
1198
+ output = (pooled_logits,) + transformer_outputs[1:]
1199
+ return ((loss,) + output) if loss is not None else output
1200
+
1201
+ return SequenceClassifierOutputWithPast(
1202
+ loss=loss,
1203
+ logits=pooled_logits,
1204
+ past_key_values=transformer_outputs.past_key_values,
1205
+ hidden_states=transformer_outputs.hidden_states,
1206
+ attentions=transformer_outputs.attentions,
1207
+ )
1208
+
1209
+
1210
+ @add_start_docstrings(
1211
+ """
1212
+ The Glm Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1213
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1214
+ """,
1215
+ GLM_START_DOCSTRING,
1216
+ )
1217
+ class GlmForTokenClassification(GlmPreTrainedModel):
1218
+ def __init__(self, config: GlmConfig):
1219
+ super().__init__(config)
1220
+ self.num_labels = config.num_labels
1221
+ self.model = GlmModel(config)
1222
+ if getattr(config, "classifier_dropout", None) is not None:
1223
+ classifier_dropout = config.classifier_dropout
1224
+ elif getattr(config, "hidden_dropout", None) is not None:
1225
+ classifier_dropout = config.hidden_dropout
1226
+ else:
1227
+ classifier_dropout = 0.1
1228
+ self.dropout = nn.Dropout(classifier_dropout)
1229
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1230
+
1231
+ # Initialize weights and apply final processing
1232
+ self.post_init()
1233
+
1234
+ def get_input_embeddings(self):
1235
+ return self.model.embed_tokens
1236
+
1237
+ def set_input_embeddings(self, value):
1238
+ self.model.embed_tokens = value
1239
+
1240
+ @add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING)
1241
+ @add_code_sample_docstrings(
1242
+ checkpoint=_CHECKPOINT_FOR_DOC,
1243
+ output_type=TokenClassifierOutput,
1244
+ config_class=_CONFIG_FOR_DOC,
1245
+ )
1246
+ def forward(
1247
+ self,
1248
+ input_ids: Optional[torch.LongTensor] = None,
1249
+ attention_mask: Optional[torch.Tensor] = None,
1250
+ position_ids: Optional[torch.LongTensor] = None,
1251
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1252
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1253
+ labels: Optional[torch.LongTensor] = None,
1254
+ use_cache: Optional[bool] = None,
1255
+ output_attentions: Optional[bool] = None,
1256
+ output_hidden_states: Optional[bool] = None,
1257
+ return_dict: Optional[bool] = None,
1258
+ ) -> Union[Tuple, TokenClassifierOutput]:
1259
+ r"""
1260
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1261
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1262
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1263
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1264
+ """
1265
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1266
+
1267
+ outputs = self.model(
1268
+ input_ids,
1269
+ attention_mask=attention_mask,
1270
+ position_ids=position_ids,
1271
+ past_key_values=past_key_values,
1272
+ inputs_embeds=inputs_embeds,
1273
+ use_cache=use_cache,
1274
+ output_attentions=output_attentions,
1275
+ output_hidden_states=output_hidden_states,
1276
+ return_dict=return_dict,
1277
+ )
1278
+ sequence_output = outputs[0]
1279
+ sequence_output = self.dropout(sequence_output)
1280
+ logits = self.score(sequence_output)
1281
+
1282
+ loss = None
1283
+ if labels is not None:
1284
+ loss = self.loss_function(logits, labels, self.config)
1285
+
1286
+ if not return_dict:
1287
+ output = (logits,) + outputs[2:]
1288
+ return ((loss,) + output) if loss is not None else output
1289
+
1290
+ return TokenClassifierOutput(
1291
+ loss=loss,
1292
+ logits=logits,
1293
+ hidden_states=outputs.hidden_states,
1294
+ attentions=outputs.attentions,
1295
+ )
1296
+
1297
+
1298
+ __all__ = [
1299
+ "GlmPreTrainedModel",
1300
+ "GlmModel",
1301
+ "GlmForCausalLM",
1302
+ "GlmForSequenceClassification",
1303
+ "GlmForTokenClassification",
1304
+ ]
special_tokens_map.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "[MASK]",
5
+ "[gMASK]",
6
+ "[sMASK]",
7
+ "<sop>",
8
+ "<eop>",
9
+ "<|system|>",
10
+ "<|user|>",
11
+ "<|assistant|>",
12
+ "<|observation|>",
13
+ "<|begin_of_image|>",
14
+ "<|end_of_image|>",
15
+ "<|begin_of_video|>",
16
+ "<|end_of_video|>"
17
+ ],
18
+ "eos_token": {
19
+ "content": "<|endoftext|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<|endoftext|>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ }
32
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "59246": {
4
+ "content": "<|endoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "59247": {
12
+ "content": "[MASK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "59248": {
20
+ "content": "[gMASK]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "59249": {
28
+ "content": "[sMASK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "59250": {
36
+ "content": "<sop>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "59251": {
44
+ "content": "<eop>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "59252": {
52
+ "content": "<|system|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "59253": {
60
+ "content": "<|user|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "59254": {
68
+ "content": "<|assistant|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "59255": {
76
+ "content": "<|observation|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "59256": {
84
+ "content": "<|begin_of_image|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "59257": {
92
+ "content": "<|end_of_image|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "59258": {
100
+ "content": "<|begin_of_video|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "59259": {
108
+ "content": "<|end_of_video|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ }
115
+ },
116
+ "additional_special_tokens": [
117
+ "<|endoftext|>",
118
+ "[MASK]",
119
+ "[gMASK]",
120
+ "[sMASK]",
121
+ "<sop>",
122
+ "<eop>",
123
+ "<|system|>",
124
+ "<|user|>",
125
+ "<|assistant|>",
126
+ "<|observation|>",
127
+ "<|begin_of_image|>",
128
+ "<|end_of_image|>",
129
+ "<|begin_of_video|>",
130
+ "<|end_of_video|>"
131
+ ],
132
+ "chat_template": "{% for item in messages %}{% if item['role'] == 'system' %}<|system|>\n{{ item['content'] }}{% elif item['role'] == 'user' %}<|user|>\n{{ item['content'] }}{% elif item['role'] == 'assistant' %}<|assistant|>\n{{ item['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>\n{% endif %}",
133
+ "clean_up_tokenization_spaces": false,
134
+ "do_lower_case": false,
135
+ "eos_token": "<|endoftext|>",
136
+ "image_size": 448,
137
+ "model_input_names": [
138
+ "input_ids",
139
+ "attention_mask"
140
+ ],
141
+ "model_max_length": 8192,
142
+ "pad_token": "<|endoftext|>",
143
+ "padding_side": "left",
144
+ "remove_space": false,
145
+ "tokenizer_class": "PreTrainedTokenizerFast"
146
+ }