# coding=utf-8 # Copyright 2022 shunxing1234 and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache` License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GLM model configuration """ from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) GLM_PRETRAINED_CONFIG_ARCHIVE_MAP = { "shunxing1234/GLM": "https://huggingface.co./shunxing1234/GLM/resolve/main/config.json", # See all GLM models at https://huggingface.co./models?filter=glm } class GLMConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`~GLMModel`]. It is used to instantiate an GLM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GLM [shunxing1234/GLM-base-cased](https://huggingface.co./shunxing1234/GLM-base-cased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the GLM model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`~GLMModel`] or [`~TFGLMModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`~GLMModel`] or [`~TFGLMModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Example: ```python >>> from transformers import GLMModel, GLMConfig >>> # Initializing a GLM shunxing1234/GLM-base-cased style configuration >>> configuration = GLMConfig() >>> # Initializing a model from the shunxing1234/GLM-base-cased style configuration >>> model = GLMModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "glm" attribute_map = { "num_hidden_layers": "num_layers" } def __init__( self, num_layers=24, vocab_size=30592, hidden_size=1024, num_attention_heads=16, embedding_dropout_prob=0.1, attention_dropout_prob=0.1, output_dropout_prob=0.1, max_sequence_length=512, checkpoint_activations=False, checkpoint_num_layers=1, parallel_output=True, relative_encoding=False, block_position_encoding=True, output_predict=False, spell_length=None, spell_func="lstm", attention_scale=1.0, initializer_range=0.02, pool_token="cls", classifier_dropout=None, **kwargs ): self.num_layers = num_layers self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.embedding_dropout_prob = embedding_dropout_prob self.attention_dropout_prob = attention_dropout_prob self.output_dropout_prob = output_dropout_prob self.max_sequence_length = max_sequence_length self.checkpoint_activations = checkpoint_activations self.checkpoint_num_layers = checkpoint_num_layers self.parallel_output = parallel_output self.relative_encoding = relative_encoding self.block_position_encoding = block_position_encoding self.output_predict = output_predict self.spell_length = spell_length self.spell_func = spell_func self.attention_scale = attention_scale self.initializer_range = initializer_range self.pool_token = pool_token self.classifier_dropout = classifier_dropout super().__init__(**kwargs)