--- license: other language: - en base_model: - meta-llama/Meta-Llama-3.1-8B-Instruct pipeline_tag: video-text-to-text inference: false library_name: transformers --- [δΈ­ζ–‡ι˜…θ―»](README_zh.md) # CogVLM2-Llama3-Caption
[Code](https://github.com/THUDM/CogVideo/tree/main/tools/caption) | πŸ€— [Hugging Face](https://huggingface.co./THUDM/cogvlm2-llama3-caption) | πŸ€– [ModelScope](https://modelscope.cn/models/ZhipuAI/cogvlm2-llama3-caption/) Typically, most video data does not come with corresponding descriptive text, so it is necessary to convert the video data into textual descriptions to provide the essential training data for text-to-video models. CogVLM2-Caption is a video captioning model used to generate training data for the CogVideoX model.
## Usage ```python import io import argparse import numpy as np import torch from decord import cpu, VideoReader, bridge from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_PATH = "THUDM/cogvlm2-llama3-caption" DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[ 0] >= 8 else torch.float16 parser = argparse.ArgumentParser(description="CogVLM2-Video CLI Demo") parser.add_argument('--quant', type=int, choices=[4, 8], help='Enable 4-bit or 8-bit precision loading', default=0) args = parser.parse_args([]) def load_video(video_data, strategy='chat'): bridge.set_bridge('torch') mp4_stream = video_data num_frames = 24 decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0)) frame_id_list = None total_frames = len(decord_vr) if strategy == 'base': clip_end_sec = 60 clip_start_sec = 0 start_frame = int(clip_start_sec * decord_vr.get_avg_fps()) end_frame = min(total_frames, int(clip_end_sec * decord_vr.get_avg_fps())) if clip_end_sec is not None else total_frames frame_id_list = np.linspace(start_frame, end_frame - 1, num_frames, dtype=int) elif strategy == 'chat': timestamps = decord_vr.get_frame_timestamp(np.arange(total_frames)) timestamps = [i[0] for i in timestamps] max_second = round(max(timestamps)) + 1 frame_id_list = [] for second in range(max_second): closest_num = min(timestamps, key=lambda x: abs(x - second)) index = timestamps.index(closest_num) frame_id_list.append(index) if len(frame_id_list) >= num_frames: break video_data = decord_vr.get_batch(frame_id_list) video_data = video_data.permute(3, 0, 1, 2) return video_data tokenizer = AutoTokenizer.from_pretrained( MODEL_PATH, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, torch_dtype=TORCH_TYPE, trust_remote_code=True ).eval().to(DEVICE) def predict(prompt, video_data, temperature): strategy = 'chat' video = load_video(video_data, strategy=strategy) history = [] query = prompt inputs = model.build_conversation_input_ids( tokenizer=tokenizer, query=query, images=[video], history=history, template_version=strategy ) inputs = { 'input_ids': inputs['input_ids'].unsqueeze(0).to('cuda'), 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to('cuda'), 'attention_mask': inputs['attention_mask'].unsqueeze(0).to('cuda'), 'images': [[inputs['images'][0].to('cuda').to(TORCH_TYPE)]], } gen_kwargs = { "max_new_tokens": 2048, "pad_token_id": 128002, "top_k": 1, "do_sample": False, "top_p": 0.1, "temperature": temperature, } with torch.no_grad(): outputs = model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response def test(): prompt = "Please describe this video in detail." temperature = 0.1 video_data = open('test.mp4', 'rb').read() response = predict(prompt, video_data, temperature) print(response) if __name__ == '__main__': test() ``` ## License This model is released under the CogVLM2 [LICENSE](https://modelscope.cn/models/ZhipuAI/cogvlm2-video-llama3-base/file/view/master?fileName=LICENSE&status=0). For models built with Meta Llama 3, please also adhere to the [LLAMA3_LICENSE](https://modelscope.cn/models/ZhipuAI/cogvlm2-video-llama3-base/file/view/master?fileName=LLAMA3_LICENSE&status=0). ## Citation 🌟 If you find our work helpful, please leave us a star and cite our paper. ``` @article{yang2024cogvideox, title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer}, author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others}, journal={arXiv preprint arXiv:2408.06072}, year={2024} }