--- language: - en - zh library_name: transformers tags: - Long Context - chatglm - llama datasets: - THUDM/LongAlign-10k - THUDM/LongBench pipeline_tag: text-generation --- # LongAlign-13B-64k

🤗 [LongAlign Dataset] • 💻 [Github Repo] • 📃 [LongAlign Paper]

**LongAlign** is the first full recipe for LLM alignment on long context. We propose the **LongAlign-10k** dataset, containing 10,000 long instruction data of 8k-64k in length. We investigate on trianing strategies, namely **packing (with loss weighting) and sorted batching**, which are all implemented in our code. For real-world long context evaluation, we introduce **LongBench-Chat** that evaluate the instruction-following capability on queries of 10k-100k length. ## All Models We open-sourced the following list of models: |Model|Huggingface Repo|Description| |---|---|---| |**LongAlign-6B-64k-base**| [🤗 Huggingface Repo](https://huggingface.co./THUDM/LongAlign-6B-64k-base) | **ChatGLM3-6B** with an extended 64k context window | |**LongAlign-6B-64k**| [🤗 Huggingface Repo](https://huggingface.co./THUDM/LongAlign-6B-64k) | Chat model by LongAlign training on LongAlign-6B-64k-base| |**LongAlign-7B-64k-base**| [🤗 Huggingface Repo](https://huggingface.co./THUDM/LongAlign-7B-64k-base) | **Llama-2-7B** with an extended 64k context window | |**LongAlign-7B-64k**| [🤗 Huggingface Repo](https://huggingface.co./THUDM/LongAlign-7B-64k) | Chat model by LongAlign training on LongAlign-7B-64k-base| |**LongAlign-13B-64k-base**| [🤗 Huggingface Repo](https://huggingface.co./THUDM/LongAlign-13B-64k-base) | **Llama-2-13B** with an extended 64k context window | |**LongAlign-13B-64k**| [🤗 Huggingface Repo](https://huggingface.co./THUDM/LongAlign-13B-64k) | Chat model by LongAlign training on LongAlign-13B-64k-base| |**ChatGLM3-6B-128k**| [🤗 Huggingface Repo](https://huggingface.co./THUDM/chatglm3-6b-128k) | **ChatGLM3-6B** with a 128k context window| ![](assets/leaderboard.png) ## Model usage Chat prompt template for LongAlign-6B-64k: ```text [Round 1] 问:Hi! 答:Hello! What can I assist you today? [Round 2] 问:What should I do if I can't sleep at night? 答: ``` Chat prompt template for LongAlign-7B-64k and LongAlign-13B-64k: ```text [INST]Hi![/INST]Hello! What can I assist you today? [INST]What should I do if I can't sleep at night?[/INST] ``` ChatGLM3-6B-128k uses the same prompt template as [ChatGLM3-6B](https://huggingface.co./THUDM/chatglm3-6b). A simple demo for deployment of the model: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("THUDM/LongAlign-6B-64k", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("THUDM/LongAlign-6B-64k", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") model = model.eval() query = open("assets/paper.txt").read() + "\n\nPlease summarize the paper." response, history = model.chat(tokenizer, query, history=[], max_new_tokens=512, temperature=1) print(response) ``` ## Citation If you find our work useful, please consider citing LongAlign: ``` ```