File size: 3,364 Bytes
3b64503 e06267b 802c088 3b64503 4bd5c5e 3b64503 f439096 3b64503 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
language:
- en
- zh
library_name: transformers
tags:
- Long Context
- llama
datasets:
- THUDM/LongAlign-10k
pipeline_tag: text-generation
license: apache-2.0
---
# LongAlign-13B-64k
<p align="center">
🤗 <a href="https://huggingface.co./datasets/THUDM/LongAlign-10k" target="_blank">[LongAlign Dataset] </a> • 💻 <a href="https://github.com/THUDM/LongAlign" target="_blank">[Github Repo]</a> • 📃 <a href="https://arxiv.org/abs/2401.18058" target="_blank">[LongAlign Paper]</a>
</p>
**LongAlign** is the first full recipe for LLM alignment on long context. We propose the **LongAlign-10k** dataset, containing 10,000 long instruction data of 8k-64k in length. We investigate on trianing strategies, namely **packing (with loss weighting) and sorted batching**, which are all implemented in our code. For real-world long context evaluation, we introduce **LongBench-Chat** that evaluate the instruction-following capability on queries of 10k-100k length.
## All Models
We open-sourced the following list of models:
|Model|Huggingface Repo|Description|
|---|---|---|
|**LongAlign-6B-64k-base**| [🤗 Huggingface Repo](https://huggingface.co./THUDM/LongAlign-6B-64k-base) | **ChatGLM3-6B** with an extended 64k context window |
|**LongAlign-6B-64k**| [🤗 Huggingface Repo](https://huggingface.co./THUDM/LongAlign-6B-64k) | Chat model by LongAlign training on LongAlign-6B-64k-base|
|**LongAlign-7B-64k-base**| [🤗 Huggingface Repo](https://huggingface.co./THUDM/LongAlign-7B-64k-base) | **Llama-2-7B** with an extended 64k context window |
|**LongAlign-7B-64k**| [🤗 Huggingface Repo](https://huggingface.co./THUDM/LongAlign-7B-64k) | Chat model by LongAlign training on LongAlign-7B-64k-base|
|**LongAlign-13B-64k-base**| [🤗 Huggingface Repo](https://huggingface.co./THUDM/LongAlign-13B-64k-base) | **Llama-2-13B** with an extended 64k context window |
|**LongAlign-13B-64k**| [🤗 Huggingface Repo](https://huggingface.co./THUDM/LongAlign-13B-64k) | Chat model by LongAlign training on LongAlign-13B-64k-base|
|**ChatGLM3-6B-128k**| [🤗 Huggingface Repo](https://huggingface.co./THUDM/chatglm3-6b-128k) | **ChatGLM3-6B** with a 128k context window|
![](assets/leaderboard.png)
## Model usage
Chat prompt template for LongAlign-6B-64k:
```text
[Round 1]
问:Hi!
答:Hello! What can I assist you today?
[Round 2]
问:What should I do if I can't sleep at night?
答:
```
Chat prompt template for LongAlign-7B-64k and LongAlign-13B-64k:
```text
[INST]Hi![/INST]Hello! What can I assist you today?
[INST]What should I do if I can't sleep at night?[/INST]
```
ChatGLM3-6B-128k uses the same prompt template as [ChatGLM3-6B](https://huggingface.co./THUDM/chatglm3-6b).
A simple demo for deployment of the model:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("THUDM/LongAlign-6B-64k", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("THUDM/LongAlign-6B-64k", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
model = model.eval()
query = open("assets/paper.txt").read() + "\n\nPlease summarize the paper."
response, history = model.chat(tokenizer, query, history=[], max_new_tokens=512, temperature=1)
print(response)
```
## Citation
If you find our work useful, please consider citing LongAlign:
```
``` |