--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: test_model results: [] --- # test_model This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1597 - F1: 0.0 - Roc Auc: 0.5 - Accuracy: 0.8917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---:|:-------:|:--------:| | No log | 1.0 | 35 | 0.1597 | 0.0 | 0.5 | 0.8917 | | No log | 2.0 | 70 | 0.1509 | 0.0 | 0.5 | 0.8917 | | No log | 3.0 | 105 | 0.1507 | 0.0 | 0.5 | 0.8917 | | No log | 4.0 | 140 | 0.1506 | 0.0 | 0.5 | 0.8917 | | No log | 5.0 | 175 | 0.1503 | 0.0 | 0.5 | 0.8917 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3