File size: 3,715 Bytes
df35caf 1766405 5a8c77f b52e4d3 5a8c77f df35caf 5a8c77f df35caf 5a8c77f df35caf 5a8c77f df35caf 9b553f5 61ede34 f7cf815 61ede34 9b553f5 ea21195 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
datasets:
- maywell/ko_Ultrafeedback_binarized
base model:
- yanolja/EEVE-Korean-Instruct-10.8B-v1.0
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f22e4076fedc4fd11e978f/MoTedec_ZL8GM2MmGyAPs.png)
# T3Q-LLM-sft1.0-dpo1.0
## This model is a version of T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0 that has been fine-tuned with DPO.
## Model Developers Chihoon Lee(chihoonlee10), T3Q
## Prompt Template
```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: {prompt}
Assistant:
```
## How to Use it
```python
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0")
tokenizer = AutoTokenizer.from_pretrained("T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0")
prompt_template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\nHuman: {prompt}\nAssistant:\n"
text = 'ํ๊ตญ์ ์๋๋ ์ด๋์ธ๊ฐ์? ์๋ ์ ํ์ง ์ค ๊ณจ๋ผ์ฃผ์ธ์.\n\n(A) ๊ฒฝ์ฑ\n(B) ๋ถ์ฐ\n(C) ํ์\n(D) ์์ธ\n(E) ์ ์ฃผ'
model_inputs = tokenizer(prompt_template.format(prompt=text), return_tensors='pt')
outputs = model.generate(**model_inputs, max_new_tokens=256)
output_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
print(output_text)
```
### Example Output
```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: ํ๊ตญ์ ์๋๋ ์ด๋์ธ๊ฐ์? ์๋ ์ ํ์ง ์ค ๊ณจ๋ผ์ฃผ์ธ์.
(A) ๊ฒฝ์ฑ
(B) ๋ถ์ฐ
(C) ํ์
(D) ์์ธ
(E) ์ ์ฃผ
Assistant:
(D) ์์ธ์ด ํ๊ตญ์ ์๋์
๋๋ค. ์์ธ์ ๋๋ผ์ ๋ถ๋๋ถ์ ์์นํด ์์ผ๋ฉฐ, ์ ์น, ๊ฒฝ์ , ๋ฌธํ์ ์ค์ฌ์ง์
๋๋ค. ์ฝ 1,000๋ง ๋ช
์ด ๋๋ ์ธ๊ตฌ๋ฅผ ๊ฐ์ง ์ธ๊ณ์์ ๊ฐ์ฅ ํฐ ๋์ ์ค ํ๋์
๋๋ค. ์์ธ์ ๋์ ๋น๋ฉ, ํ๋์ ์ธ ์ธํ๋ผ, ํ๊ธฐ ๋ฌธํ ์ฅ๋ฉด์ผ๋ก ์ ๋ช
ํฉ๋๋ค. ๋ํ, ๋ง์ ์ญ์ฌ์ ๋ช
์์ ๋ฐ๋ฌผ๊ด์ด ์์ด ๋ฐฉ๋ฌธ๊ฐ๋ค์๊ฒ ํ๋ถํ ๋ฌธํ ์ฒดํ์ ์ ๊ณตํฉ๋๋ค.
```
| Task |Version| Metric |Value | |Stderr|
|----------------|------:|--------|-----:|---|-----:|
|kobest_boolq | 0|acc |0.9387|ยฑ |0.0064|
| | |macro_f1|0.9387|ยฑ |0.0064|
|kobest_copa | 0|acc |0.7590|ยฑ |0.0135|
| | |macro_f1|0.7585|ยฑ |0.0135|
|kobest_hellaswag| 0|acc |0.5080|ยฑ |0.0224|
| | |acc_norm|0.5580|ยฑ |0.0222|
| | |macro_f1|0.5049|ยฑ |0.0224|
|kobest_sentineg | 0|acc |0.8489|ยฑ |0.0180|
| | |macro_f1|0.8483|ยฑ |0.0180|
hf-causal-experimental (pretrained=nlpai-lab/KULLM3,use_accelerate=true,trust_remote_code=true), limit: None, provide_description: False, num_fewshot: 0, batch_size: 8
| Task |Version| Metric |Value | |Stderr|
|----------------|------:|--------|-----:|---|-----:|
|kobest_boolq | 0|acc |0.8896|ยฑ |0.0084|
| | |macro_f1|0.8888|ยฑ |0.0084|
|kobest_copa | 0|acc |0.6930|ยฑ |0.0146|
| | |macro_f1|0.6925|ยฑ |0.0147|
|kobest_hellaswag| 0|acc |0.4640|ยฑ |0.0223|
| | |acc_norm|0.5240|ยฑ |0.0224|
| | |macro_f1|0.4612|ยฑ |0.0223|
|kobest_sentineg | 0|acc |0.6297|ยฑ |0.0243|
| | |macro_f1|0.6255|ยฑ |0.0244| |