---
base_model: google-bert/bert-base-uncased
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:97043
- loss:DenoisingAutoEncoderLoss
widget:
- source_sentence: เคขเคเคฃเค๐เค๐
sentences:
- เคข๐ขเคขเคฒ๐ข๐ฃเคฌ๐ชเคเคง๐ซเคฃ เคขเคเคฃเค๐เค๐ ๐เคจเคฒเค๐ เค๐เค๐คเค๐ชเคชเค๐ฏ
- ' เคฃเค ๐ช๐ข๐๐ฆ ๐ฑเค๐๐เค๐ ๐ เคจ๐เค๐ ๐ข๐ ๐ซเค๐ช ๐คเคจ๐ฑเค ๐ญเคฅ๐ข๐ฐ๐ฏ'
- ' เค เคค๐ข๐๐ข๐ ๐ เค๐เคเคฒ๐ข๐ณเค๐ช๐ เค๐เค๐คเค๐ชเคชเค๐ฏ'
- source_sentence: เคค๐ฃ๐
sentences:
- ' ๐ฒ๐ช๐ฆ๐ฆ๐ฃ๐ฃ๐ ๐ซ๐ฃเคจ๐ณ๐ฆ เคชเค เคขเค๐ข๐ฑเค ๐ณเคจ๐ฃเค๐ ๐ เคเคช๐ณเคเคฃ๐ข ๐ เค๐ฒ๐ข เคเค๐ณเคเค๐เคค๐ข เค เคช๐ณเค๐เค๐๐ข๐ เคฌ๐ฑเค๐ ๐เคเคช๐ฃเคค๐ข๐ ๐ฃเค๐๐๐ขเคฃเค
เค ๐ณ๐ซ๐ฆ๐เค๐ชเค เคชเค เค ๐ง๐ญเค ๐ฏ'
- ๐๐เคซ๐ฎ๐ฆ ๐ฃ๐ช๐ฃ๐ ๐ฃ ๐เค ๐๐ฏ
- เคค๐ฃ๐ ๐ฏ
- source_sentence: ๐ฃเค๐เคฃเค๐ ๐๐ญเคฅเคฅ๐ฌเคทเค ๐ง๐งเค ๐ฎ
sentences:
- ' ๐ฃเค๐เคฃเค๐ ๐๐ญเคฅเคฅ๐ฌเคทเค ๐ง๐งเค ๐ฎ เคง๐ช๐ฃ๐ฒ๐ฏ'
- ๐ณเคค๐ฏ
- ' ๐ณ๐ซ๐ข เคเค ๐๐ฆ เคฌเค เคฒเค๐ฒเคชเค๐เค๐ช เคค๐ฃเคฒ๐ฏ'
- source_sentence: ๐ เค๐เค๐คเค๐ชเคชเค๐ฏ
sentences:
- ' เคงเค๐ช๐๐ฆ๐ช๐ฆ เคฒเคเคจเคฃเค๐ เคข๐ฃ๐ณเคช๐ฃ๐๐ฏ'
- เคฌ๐ช๐ฆเคเคชเคทเคงเคฃ๐ชเค๐ ๐ข๐ฃ๐ฏ
- ๐ เค๐เค๐คเค๐ชเคชเค๐ฏ
- source_sentence: ๐ซเค๐ข๐ฒ๐ข ๐ณเคจ๐ช๐ฆ๐๐ฆ เค
sentences:
- ' ๐ณ๐ซเคค๐ซ๐ฆ๐ชเคขเคเคช๐ขเคจ๐ เคชเค ๐ซเค๐ข๐ฒ๐ข เคเค๐ฆ ๐ณเคจ๐ช๐ฆ๐๐ฆ เค เคค๐ข๐๐ข๐ ๐ญเคฅ๐๐๐ฏ'
- ๐ฏ
- ๐ฏ
---
# SentenceTransformer based on google-bert/bert-base-uncased
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("T-Blue/tsdae_pro_mbert")
# Run inference
sentences = [
'๐ซเค๐ข๐ฒ๐ข ๐ณเคจ๐ช๐ฆ๐๐ฆ เค',
' ๐ณ๐ซเคค๐ซ๐ฆ๐ชเคขเคเคช๐ขเคจ๐ เคชเค ๐ซเค๐ข๐ฒ๐ข เคเค๐ฆ ๐ณเคจ๐ช๐ฆ๐๐ฆ เค เคค๐ข๐๐ข๐ ๐ญเคฅ๐๐๐ฏ',
'๐ฏ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 97,043 training samples
* Columns: sentence_0
and sentence_1
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details |
- min: 3 tokens
- mean: 5.12 tokens
- max: 30 tokens
| - min: 3 tokens
- mean: 9.06 tokens
- max: 56 tokens
|
* Samples:
| sentence_0 | sentence_1 |
|:-------------------|:------------------------|
| เค๐๐ฑเค๐ข
| เค๐๐ฑเค๐ข ๐ญเค ๐ฏ
|
| เค ๐ง๐ง๐ข๐ฏ
| เค ๐ง๐ง๐ข๐ฏ
|
| ๐ข๐๐ฏ
| ๐ข๐๐ฏ
|
* Loss: [DenoisingAutoEncoderLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
Click to expand
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0824 | 500 | 1.1372 |
| 0.1649 | 1000 | 0.8075 |
| 0.2473 | 1500 | 0.7708 |
| 0.3297 | 2000 | 0.7464 |
| 0.4121 | 2500 | 0.7286 |
| 0.4946 | 3000 | 0.7187 |
| 0.5770 | 3500 | 0.7089 |
| 0.6594 | 4000 | 0.6942 |
| 0.7418 | 4500 | 0.7022 |
| 0.8243 | 5000 | 0.6939 |
| 0.9067 | 5500 | 0.6859 |
| 0.9891 | 6000 | 0.6807 |
| 1.0715 | 6500 | 0.6841 |
| 1.1540 | 7000 | 0.6764 |
| 1.2364 | 7500 | 0.6705 |
| 1.3188 | 8000 | 0.6712 |
| 1.4013 | 8500 | 0.6683 |
| 1.4837 | 9000 | 0.6662 |
| 1.5661 | 9500 | 0.6635 |
| 1.6485 | 10000 | 0.655 |
| 1.7310 | 10500 | 0.6667 |
| 1.8134 | 11000 | 0.6533 |
| 1.8958 | 11500 | 0.6564 |
| 1.9782 | 12000 | 0.646 |
| 2.0607 | 12500 | 0.6522 |
| 2.1431 | 13000 | 0.6466 |
| 2.2255 | 13500 | 0.6464 |
| 2.3079 | 14000 | 0.647 |
| 2.3904 | 14500 | 0.6408 |
| 2.4728 | 15000 | 0.6415 |
| 2.5552 | 15500 | 0.6397 |
| 2.6377 | 16000 | 0.6303 |
| 2.7201 | 16500 | 0.6465 |
| 2.8025 | 17000 | 0.6287 |
| 2.8849 | 17500 | 0.6358 |
| 2.9674 | 18000 | 0.6247 |
| 3.0498 | 18500 | 0.6318 |
| 3.1322 | 19000 | 0.627 |
| 3.2146 | 19500 | 0.6222 |
| 3.2971 | 20000 | 0.6262 |
| 3.3795 | 20500 | 0.6197 |
| 3.4619 | 21000 | 0.6234 |
| 3.5443 | 21500 | 0.6193 |
| 3.6268 | 22000 | 0.6088 |
| 3.7092 | 22500 | 0.624 |
| 3.7916 | 23000 | 0.6089 |
| 3.8741 | 23500 | 0.6184 |
| 3.9565 | 24000 | 0.6047 |
| 4.0389 | 24500 | 0.6066 |
| 4.1213 | 25000 | 0.6082 |
| 4.2038 | 25500 | 0.5999 |
| 4.2862 | 26000 | 0.6046 |
| 4.3686 | 26500 | 0.6038 |
| 4.4510 | 27000 | 0.5978 |
| 4.5335 | 27500 | 0.5948 |
| 4.6159 | 28000 | 0.5887 |
| 4.6983 | 28500 | 0.6031 |
| 4.7807 | 29000 | 0.5823 |
| 4.8632 | 29500 | 0.5953 |
| 4.9456 | 30000 | 0.5793 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.18.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### DenoisingAutoEncoderLoss
```bibtex
@inproceedings{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
pages = "671--688",
url = "https://arxiv.org/abs/2104.06979",
}
```