--- base_model: google-bert/bert-base-uncased datasets: [] language: [] library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:97043 - loss:DenoisingAutoEncoderLoss widget: - source_sentence: เคขเคšเคฃเคš๐‘€Ÿเคš๐‘€Ÿ sentences: - เคข๐‘€ขเคขเคฒ๐‘€ข๐‘ฃเคฌ๐‘€ชเคšเคง๐‘€ซเคฃ เคขเคšเคฃเคš๐‘€Ÿเคš๐‘€Ÿ ๐‘€žเคจเคฒเคš๐‘€ เคš๐‘€Ÿเคš๐‘€คเคš๐‘€ชเคชเคš๐‘€ฏ - ' เคฃเคš ๐‘€ช๐‘€ข๐‘€ž๐‘ฆ ๐‘€ฑเคš๐‘€Ÿ๐‘€Ÿเคš๐‘€Ÿ ๐‘€ เคจ๐‘€žเคš๐‘€ ๐‘€ข๐‘€Ÿ ๐‘€ซเคš๐‘€ช ๐‘€คเคจ๐‘€ฑเคš ๐‘€ญเคฅ๐‘ข๐‘€ฐ๐‘€ฏ' - ' เคš เคค๐‘€ข๐‘€ž๐‘€ข๐‘€Ÿ ๐‘€ เคš๐‘€˜เคšเคฒ๐‘€ข๐‘€ณเคš๐‘€ช๐‘€ เคš๐‘€Ÿเคš๐‘€คเคš๐‘€ชเคชเคš๐‘€ฏ' - source_sentence: เคค๐‘ฃ๐‘€  sentences: - ' ๐‘€ฒ๐‘€ช๐‘ฆ๐‘ฆ๐‘€ฃ๐‘ฃ๐‘€  ๐‘€ซ๐‘ฃเคจ๐‘€ณ๐‘ฆ เคชเคš เคขเคš๐‘€ข๐‘€ฑเคš ๐‘€ณเคจ๐‘€ฃเคš๐‘€Ÿ ๐‘€ เคšเคช๐‘€ณเคšเคฃ๐‘€ข ๐‘€ เคš๐‘€ฒ๐‘€ข เคเคš๐‘€ณเคเคš๐‘€Ÿเคค๐‘€ข เคš เคช๐‘€ณเคš๐‘€žเคš๐‘€Ÿ๐‘€ข๐‘€Ÿ เคฌ๐‘€ฑเคš๐‘€ ๐‘€Ÿเคšเคช๐‘ฃเคค๐‘€ข๐‘€Ÿ ๐‘€ฃเคš๐‘€Ÿ๐‘€Ÿ๐‘€ขเคฃเคš เคš ๐‘€ณ๐‘€ซ๐‘ฆ๐‘€žเคš๐‘€ชเคš เคชเคš เค ๐‘€ง๐‘€ญเค ๐‘€ฏ' - ๐‘€–๐‘€–เคซ๐‘€ฎ๐‘€ฆ ๐‘ฃ๐‘€ช๐‘ฃ๐‘€ ๐‘ฃ ๐‘€เค ๐‘€—๐‘€ฏ - เคค๐‘ฃ๐‘€  ๐‘€ฏ - source_sentence: ๐‘€ฃเคš๐‘€Ÿเคฃเคš๐‘€Ÿ ๐‘€๐‘€ญเคฅเคฅ๐‘€ฌเคทเค ๐‘€ง๐‘€งเค ๐‘€ฎ sentences: - ' ๐‘€ฃเคš๐‘€Ÿเคฃเคš๐‘€Ÿ ๐‘€๐‘€ญเคฅเคฅ๐‘€ฌเคทเค ๐‘€ง๐‘€งเค ๐‘€ฎ เคง๐‘€ช๐‘ฃ๐‘€ฒ๐‘€ฏ' - ๐‘€ณเคค๐‘€ฏ - ' ๐‘€ณ๐‘€ซ๐‘€ข เคžเคš ๐‘€Ÿ๐‘ฆ เคฌเคš เคฒเคš๐‘€ฒเคชเคš๐‘€Ÿเคš๐‘€ช เคค๐‘ฃเคฒ๐‘€ฏ' - source_sentence: ๐‘€ เคš๐‘€Ÿเคš๐‘€คเคš๐‘€ชเคชเคš๐‘€ฏ sentences: - ' เคงเคš๐‘€ช๐‘€ž๐‘ฆ๐‘€ช๐‘€ฆ เคฒเคšเคจเคฃเคš๐‘€Ÿ เคข๐‘ฃ๐‘€ณเคช๐‘ฃ๐‘€Ÿ๐‘€ฏ' - เคฌ๐‘€ช๐‘ฆเคšเคชเคทเคงเคฃ๐‘€ชเคš๐‘€ ๐‘€ข๐‘€ฃ๐‘€ฏ - ๐‘€ เคš๐‘€Ÿเคš๐‘€คเคš๐‘€ชเคชเคš๐‘€ฏ - source_sentence: ๐‘€ซเคš๐‘€ข๐‘€ฒ๐‘€ข ๐‘€ณเคจ๐‘€ช๐‘ฆ๐‘€Ÿ๐‘€ฆ เคš sentences: - ' ๐‘€ณ๐‘€ซเคค๐‘€ซ๐‘ฆ๐‘€ชเคขเคšเคช๐‘€ขเคจ๐‘€ž เคชเคš ๐‘€ซเคš๐‘€ข๐‘€ฒ๐‘€ข เคžเคš๐‘€ฆ ๐‘€ณเคจ๐‘€ช๐‘ฆ๐‘€Ÿ๐‘€ฆ เคš เคค๐‘€ข๐‘€ž๐‘€ข๐‘€Ÿ ๐‘€ญเคฅ๐‘€–๐‘€—๐‘€ฏ' - ๐‘€ฏ - ๐‘€ฏ --- # SentenceTransformer based on google-bert/bert-base-uncased This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("T-Blue/tsdae_pro_mbert") # Run inference sentences = [ '๐‘€ซเคš๐‘€ข๐‘€ฒ๐‘€ข ๐‘€ณเคจ๐‘€ช๐‘ฆ๐‘€Ÿ๐‘€ฆ เคš', ' ๐‘€ณ๐‘€ซเคค๐‘€ซ๐‘ฆ๐‘€ชเคขเคšเคช๐‘€ขเคจ๐‘€ž เคชเคš ๐‘€ซเคš๐‘€ข๐‘€ฒ๐‘€ข เคžเคš๐‘€ฆ ๐‘€ณเคจ๐‘€ช๐‘ฆ๐‘€Ÿ๐‘€ฆ เคš เคค๐‘€ข๐‘€ž๐‘€ข๐‘€Ÿ ๐‘€ญเคฅ๐‘€–๐‘€—๐‘€ฏ', '๐‘€ฏ', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 97,043 training samples * Columns: sentence_0 and sentence_1 * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | sentence_0 | sentence_1 | |:-------------------|:------------------------| | เคš๐‘€ž๐‘€ฑเคš๐‘€ข | เคš๐‘€ž๐‘€ฑเคš๐‘€ข ๐‘€ญเค ๐‘€ฏ | | เค ๐‘€ง๐‘€ง๐‘ข๐‘€ฏ | เค ๐‘€ง๐‘€ง๐‘ข๐‘€ฏ | | ๐‘ข๐‘€—๐‘€ฏ | ๐‘ข๐‘€—๐‘€ฏ | * Loss: [DenoisingAutoEncoderLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 5 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | |:------:|:-----:|:-------------:| | 0.0824 | 500 | 1.1372 | | 0.1649 | 1000 | 0.8075 | | 0.2473 | 1500 | 0.7708 | | 0.3297 | 2000 | 0.7464 | | 0.4121 | 2500 | 0.7286 | | 0.4946 | 3000 | 0.7187 | | 0.5770 | 3500 | 0.7089 | | 0.6594 | 4000 | 0.6942 | | 0.7418 | 4500 | 0.7022 | | 0.8243 | 5000 | 0.6939 | | 0.9067 | 5500 | 0.6859 | | 0.9891 | 6000 | 0.6807 | | 1.0715 | 6500 | 0.6841 | | 1.1540 | 7000 | 0.6764 | | 1.2364 | 7500 | 0.6705 | | 1.3188 | 8000 | 0.6712 | | 1.4013 | 8500 | 0.6683 | | 1.4837 | 9000 | 0.6662 | | 1.5661 | 9500 | 0.6635 | | 1.6485 | 10000 | 0.655 | | 1.7310 | 10500 | 0.6667 | | 1.8134 | 11000 | 0.6533 | | 1.8958 | 11500 | 0.6564 | | 1.9782 | 12000 | 0.646 | | 2.0607 | 12500 | 0.6522 | | 2.1431 | 13000 | 0.6466 | | 2.2255 | 13500 | 0.6464 | | 2.3079 | 14000 | 0.647 | | 2.3904 | 14500 | 0.6408 | | 2.4728 | 15000 | 0.6415 | | 2.5552 | 15500 | 0.6397 | | 2.6377 | 16000 | 0.6303 | | 2.7201 | 16500 | 0.6465 | | 2.8025 | 17000 | 0.6287 | | 2.8849 | 17500 | 0.6358 | | 2.9674 | 18000 | 0.6247 | | 3.0498 | 18500 | 0.6318 | | 3.1322 | 19000 | 0.627 | | 3.2146 | 19500 | 0.6222 | | 3.2971 | 20000 | 0.6262 | | 3.3795 | 20500 | 0.6197 | | 3.4619 | 21000 | 0.6234 | | 3.5443 | 21500 | 0.6193 | | 3.6268 | 22000 | 0.6088 | | 3.7092 | 22500 | 0.624 | | 3.7916 | 23000 | 0.6089 | | 3.8741 | 23500 | 0.6184 | | 3.9565 | 24000 | 0.6047 | | 4.0389 | 24500 | 0.6066 | | 4.1213 | 25000 | 0.6082 | | 4.2038 | 25500 | 0.5999 | | 4.2862 | 26000 | 0.6046 | | 4.3686 | 26500 | 0.6038 | | 4.4510 | 27000 | 0.5978 | | 4.5335 | 27500 | 0.5948 | | 4.6159 | 28000 | 0.5887 | | 4.6983 | 28500 | 0.6031 | | 4.7807 | 29000 | 0.5823 | | 4.8632 | 29500 | 0.5953 | | 4.9456 | 30000 | 0.5793 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.42.4 - PyTorch: 2.3.1+cu121 - Accelerate: 0.33.0 - Datasets: 2.18.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### DenoisingAutoEncoderLoss ```bibtex @inproceedings{wang-2021-TSDAE, title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning", author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", pages = "671--688", url = "https://arxiv.org/abs/2104.06979", } ```