File size: 14,022 Bytes
00058f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
---
base_model: google-bert/bert-base-uncased
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:97043
- loss:DenoisingAutoEncoderLoss
widget:
- source_sentence: ढचणच𑀟च𑀟
sentences:
- ढ𑀢ढल𑀢𑁣ब𑀪चध𑀫ण ढचणच𑀟च𑀟 𑀞नलच𑀠च𑀟च𑀤च𑀪पच𑀯
- ' णच 𑀪𑀢𑀞𑁦 𑀱च𑀟𑀟च𑀟 𑀠न𑀞च𑀠𑀢𑀟 𑀫च𑀪 𑀤न𑀱च 𑀭थ𑁢𑀰𑀯'
- ' च त𑀢𑀞𑀢𑀟 𑀠च𑀘चल𑀢𑀳च𑀪𑀠च𑀟च𑀤च𑀪पच𑀯'
- source_sentence: त𑁣𑀠
sentences:
- ' 𑀲𑀪𑁦𑁦𑀣𑁣𑀠 𑀫𑁣न𑀳𑁦 पच ढच𑀢𑀱च 𑀳न𑀣च𑀟 𑀠चप𑀳चण𑀢 𑀠च𑀲𑀢 झच𑀳झच𑀟त𑀢 च प𑀳च𑀞च𑀟𑀢𑀟 ब𑀱च𑀠𑀟चप𑁣त𑀢𑀟 𑀣च𑀟𑀟𑀢णच
च 𑀳𑀫𑁦𑀞च𑀪च पच ठ𑀧𑀭ठ𑀯'
- 𑀖𑀖फ𑀮𑀦 𑁣𑀪𑁣𑀠𑁣 𑀝ठ𑀗𑀯
- त𑁣𑀠 𑀯
- source_sentence: 𑀣च𑀟णच𑀟 𑀝𑀭थथ𑀬षठ𑀧𑀧ठ𑀮
sentences:
- ' 𑀣च𑀟णच𑀟 𑀝𑀭थथ𑀬षठ𑀧𑀧ठ𑀮 ध𑀪𑁣𑀲𑀯'
- 𑀳त𑀯
- ' 𑀳𑀫𑀢 ञच 𑀟𑁦 बच लच𑀲पच𑀟च𑀪 त𑁣ल𑀯'
- source_sentence: 𑀠च𑀟च𑀤च𑀪पच𑀯
sentences:
- ' धच𑀪𑀞𑁦𑀪𑀦 लचनणच𑀟 ढ𑁣𑀳प𑁣𑀟𑀯'
- ब𑀪𑁦चपषधण𑀪च𑀠𑀢𑀣𑀯
- 𑀠च𑀟च𑀤च𑀪पच𑀯
- source_sentence: 𑀫च𑀢𑀲𑀢 𑀳न𑀪𑁦𑀟𑀦 च
sentences:
- ' 𑀳𑀫त𑀫𑁦𑀪ढचप𑀢न𑀞 पच 𑀫च𑀢𑀲𑀢 ञच𑀦 𑀳न𑀪𑁦𑀟𑀦 च त𑀢𑀞𑀢𑀟 𑀭थ𑀖𑀗𑀯'
- 𑀯
- 𑀯
---
# SentenceTransformer based on google-bert/bert-base-uncased
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("T-Blue/tsdae_pro_mbert")
# Run inference
sentences = [
'𑀫च𑀢𑀲𑀢 𑀳न𑀪𑁦𑀟𑀦 च',
' 𑀳𑀫त𑀫𑁦𑀪ढचप𑀢न𑀞 पच 𑀫च𑀢𑀲𑀢 ञच𑀦 𑀳न𑀪𑁦𑀟𑀦 च त𑀢𑀞𑀢𑀟 𑀭थ𑀖𑀗𑀯',
'𑀯',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 97,043 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 5.12 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.06 tokens</li><li>max: 56 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-------------------|:------------------------|
| <code>च𑀞𑀱च𑀢</code> | <code> च𑀞𑀱च𑀢 𑀭ठ𑀯</code> |
| <code>ठ𑀧𑀧𑁢𑀯</code> | <code> ठ𑀧𑀧𑁢𑀯</code> |
| <code>𑁢𑀗𑀯</code> | <code>𑁢𑀗𑀯</code> |
* Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0824 | 500 | 1.1372 |
| 0.1649 | 1000 | 0.8075 |
| 0.2473 | 1500 | 0.7708 |
| 0.3297 | 2000 | 0.7464 |
| 0.4121 | 2500 | 0.7286 |
| 0.4946 | 3000 | 0.7187 |
| 0.5770 | 3500 | 0.7089 |
| 0.6594 | 4000 | 0.6942 |
| 0.7418 | 4500 | 0.7022 |
| 0.8243 | 5000 | 0.6939 |
| 0.9067 | 5500 | 0.6859 |
| 0.9891 | 6000 | 0.6807 |
| 1.0715 | 6500 | 0.6841 |
| 1.1540 | 7000 | 0.6764 |
| 1.2364 | 7500 | 0.6705 |
| 1.3188 | 8000 | 0.6712 |
| 1.4013 | 8500 | 0.6683 |
| 1.4837 | 9000 | 0.6662 |
| 1.5661 | 9500 | 0.6635 |
| 1.6485 | 10000 | 0.655 |
| 1.7310 | 10500 | 0.6667 |
| 1.8134 | 11000 | 0.6533 |
| 1.8958 | 11500 | 0.6564 |
| 1.9782 | 12000 | 0.646 |
| 2.0607 | 12500 | 0.6522 |
| 2.1431 | 13000 | 0.6466 |
| 2.2255 | 13500 | 0.6464 |
| 2.3079 | 14000 | 0.647 |
| 2.3904 | 14500 | 0.6408 |
| 2.4728 | 15000 | 0.6415 |
| 2.5552 | 15500 | 0.6397 |
| 2.6377 | 16000 | 0.6303 |
| 2.7201 | 16500 | 0.6465 |
| 2.8025 | 17000 | 0.6287 |
| 2.8849 | 17500 | 0.6358 |
| 2.9674 | 18000 | 0.6247 |
| 3.0498 | 18500 | 0.6318 |
| 3.1322 | 19000 | 0.627 |
| 3.2146 | 19500 | 0.6222 |
| 3.2971 | 20000 | 0.6262 |
| 3.3795 | 20500 | 0.6197 |
| 3.4619 | 21000 | 0.6234 |
| 3.5443 | 21500 | 0.6193 |
| 3.6268 | 22000 | 0.6088 |
| 3.7092 | 22500 | 0.624 |
| 3.7916 | 23000 | 0.6089 |
| 3.8741 | 23500 | 0.6184 |
| 3.9565 | 24000 | 0.6047 |
| 4.0389 | 24500 | 0.6066 |
| 4.1213 | 25000 | 0.6082 |
| 4.2038 | 25500 | 0.5999 |
| 4.2862 | 26000 | 0.6046 |
| 4.3686 | 26500 | 0.6038 |
| 4.4510 | 27000 | 0.5978 |
| 4.5335 | 27500 | 0.5948 |
| 4.6159 | 28000 | 0.5887 |
| 4.6983 | 28500 | 0.6031 |
| 4.7807 | 29000 | 0.5823 |
| 4.8632 | 29500 | 0.5953 |
| 4.9456 | 30000 | 0.5793 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.18.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### DenoisingAutoEncoderLoss
```bibtex
@inproceedings{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
pages = "671--688",
url = "https://arxiv.org/abs/2104.06979",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |