File size: 9,457 Bytes
c338980 769b82c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
---
pipeline_tag: text-generation
language:
- multilingual
inference: false
license: cc-by-nc-4.0
library_name: transformers
base_model: jinaai/ReaderLM-v2
tags:
- llama-cpp
- gguf-my-repo
---
# Svngoku/ReaderLM-v2-Q8_0-GGUF
This model was converted to GGUF format from [`jinaai/ReaderLM-v2`](https://huggingface.co./jinaai/ReaderLM-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co./jinaai/ReaderLM-v2) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Svngoku/ReaderLM-v2-Q8_0-GGUF --hf-file readerlm-v2-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Svngoku/ReaderLM-v2-Q8_0-GGUF --hf-file readerlm-v2-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Svngoku/ReaderLM-v2-Q8_0-GGUF --hf-file readerlm-v2-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Svngoku/ReaderLM-v2-Q8_0-GGUF --hf-file readerlm-v2-q8_0.gguf -c 2048
```
## VLLM Inference
```py
# -*- coding: utf-8 -*-
"""Untitled64.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1hVqCTm6XLJmrOjkaIYLHXgOTg2ffnhue
"""
!pip install vllm
model_name = 'Svngoku/ReaderLM-v2-Q8_0-GGUF' # @param ["jinaai/ReaderLM-v2", "jinaai/reader-lm-1.5b", "Svngoku/ReaderLM-v2-Q8_0-GGUF"]
max_model_len = 256000 # @param {type:"integer"}
# @markdown ---
# @markdown ### SamplingParams:
top_k = 1 # @param {type:"integer"}
temperature = 0 # @param {type:"slider", min:0, max:1, step:0.1}
repetition_penalty = 1.05 # @param {type:"number"}
presence_penalty = 0.25 # @param {type:"slider", min:0, max:1, step:0.1}
max_tokens = 8192 # @param {type:"integer"}
# @markdown ---
from vllm import SamplingParams
sampling_params = SamplingParams(temperature=temperature, top_k=top_k, presence_penalty=presence_penalty, repetition_penalty=repetition_penalty, max_tokens=max_tokens)
print('sampling_params', sampling_params)
!wget https://huggingface.co./Svngoku/ReaderLM-v2-Q8_0-GGUF/resolve/main/readerlm-v2-q8_0.gguf
!wget https://huggingface.co./jinaai/ReaderLM-v2/resolve/main/tokenizer.json
!vllm serve /content/readerlm-v2-q8_0.gguf --tokenizer /content/tokenizer.json
from vllm import LLM
llm = LLM(
model="/content/readerlm-v2-q8_0.gguf",
max_model_len=max_model_len,
tokenizer='jinaai/ReaderLM-v2'
)
# @title ## Specify a URL as input{"run":"auto","vertical-output":true}
import re
import requests
from IPython.display import display, Markdown
def display_header(text):
display(Markdown(f'**{text}**'))
def display_rendered_md(text):
# for mimic "Reading mode" in Safari/Firefox
display(Markdown(text))
def display_content(text):
display(Markdown(text))
def get_html_content(url):
api_url = f'https://r.jina.ai/{url}'
headers = {'X-Return-Format': 'html'}
try:
response = requests.get(api_url, headers=headers, timeout=10)
response.raise_for_status()
return response.text
except requests.exceptions.RequestException as e:
return f"error: {str(e)}"
def get_html_content(url):
api_url = f'https://r.jina.ai/{url}'
headers = {'X-Return-Format': 'html'}
try:
response = requests.get(api_url, headers=headers, timeout=10)
response.raise_for_status()
return response.text
except requests.exceptions.RequestException as e:
return f"error: {str(e)}"
def create_prompt(text: str, tokenizer = None, instruction: str = None, schema: str = None) -> str:
"""
Create a prompt for the model with optional instruction and JSON schema.
Args:
text (str): The input HTML text
tokenizer: The tokenizer to use
instruction (str, optional): Custom instruction for the model
schema (str, optional): JSON schema for structured extraction
Returns:
str: The formatted prompt
"""
if not tokenizer:
tokenizer = llm.get_tokenizer()
if not instruction:
instruction = "Extract the main content from the given HTML and convert it to Markdown format."
if schema:
instruction = 'Extract the specified information from a list of news threads and present it in a structured JSON format.'
prompt = f"{instruction}\n```html\n{text}\n```\nThe JSON schema is as follows:```json{schema}```"
else:
prompt = f"{instruction}\n```html\n{text}\n```"
messages = [
{
"role": "user",
"content": prompt,
}
]
return tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# (REMOVE <SCRIPT> to </script> and variations)
SCRIPT_PATTERN = r'<[ ]*script.*?\/[ ]*script[ ]*>' # mach any char zero or more times
# text = re.sub(pattern, '', text, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
# (REMOVE HTML <STYLE> to </style> and variations)
STYLE_PATTERN = r'<[ ]*style.*?\/[ ]*style[ ]*>' # mach any char zero or more times
# text = re.sub(pattern, '', text, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
# (REMOVE HTML <META> to </meta> and variations)
META_PATTERN = r'<[ ]*meta.*?>' # mach any char zero or more times
# text = re.sub(pattern, '', text, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
# (REMOVE HTML COMMENTS <!-- to --> and variations)
COMMENT_PATTERN = r'<[ ]*!--.*?--[ ]*>' # mach any char zero or more times
# text = re.sub(pattern, '', text, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
# (REMOVE HTML LINK <LINK> to </link> and variations)
LINK_PATTERN = r'<[ ]*link.*?>' # mach any char zero or more times
# (REPLACE base64 images)
BASE64_IMG_PATTERN = r'<img[^>]+src="data:image/[^;]+;base64,[^"]+"[^>]*>'
# (REPLACE <svg> to </svg> and variations)
SVG_PATTERN = r'(<svg[^>]*>)(.*?)(<\/svg>)'
def replace_svg(html: str, new_content: str = "this is a placeholder") -> str:
return re.sub(
SVG_PATTERN,
lambda match: f"{match.group(1)}{new_content}{match.group(3)}",
html,
flags=re.DOTALL,
)
def replace_base64_images(html: str, new_image_src: str = "#") -> str:
return re.sub(BASE64_IMG_PATTERN, f'<img src="{new_image_src}"/>', html)
def has_base64_images(text: str) -> bool:
base64_content_pattern = r'data:image/[^;]+;base64,[^"]+'
return bool(re.search(base64_content_pattern, text, flags=re.DOTALL))
def has_svg_components(text: str) -> bool:
return bool(re.search(SVG_PATTERN, text, flags=re.DOTALL))
def clean_html(html: str, clean_svg: bool = False, clean_base64: bool = False):
html = re.sub(SCRIPT_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
html = re.sub(STYLE_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
html = re.sub(META_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
html = re.sub(COMMENT_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
html = re.sub(LINK_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
if clean_svg:
html = replace_svg(html)
if clean_base64:
html = replace_base64_images(html)
return html
url = "https://news.ycombinator.com/" # @param {type:"string"}
print(f'We will use Jina Reader to fetch the **raw HTML** from: {url}')
html = get_html_content(url)
html = clean_html(html, clean_svg=True, clean_base64=True)
prompt = create_prompt(html)
result = llm.generate(prompt, sampling_params=sampling_params)[0].outputs[0].text.strip()
print(result)
import json
schema = {
"type": "object",
"properties": {
"title": {"type": "string", "description": "News thread title"},
"url": {"type": "string", "description": "Thread URL"},
"summary": {"type": "string", "description": "Article summary"},
"keywords": {"type": "list", "description": "Descriptive keywords"},
"author": {"type": "string", "description": "Thread author"},
"comments": {"type": "integer", "description": "Comment count"}
},
"required": ["title", "url", "date", "points", "author", "comments"]
}
prompt = create_prompt(html, schema=json.dumps(schema, indent=2))
result = llm.generate(prompt, sampling_params=sampling_params)[0].outputs[0].text.strip()
print(result)
from vllm.distributed.parallel_state import destroy_model_parallel, destroy_distributed_environment
import gc
import os
import torch
destroy_model_parallel()
destroy_distributed_environment()
del llm.llm_engine.model_executor.driver_worker
del llm.llm_engine.model_executor
del llm
gc.collect()
torch.cuda.empty_cache()
print(f"cuda memory: {torch.cuda.memory_allocated() // 1024 // 1024}MB")
```
|