Update README.md
Browse files
README.md
CHANGED
@@ -1,78 +1,47 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
- generated_from_trainer
|
4 |
-
base_model: jq/nllb-1.3B-many-to-many-step-2k
|
5 |
-
datasets:
|
6 |
-
- generator
|
7 |
model-index:
|
8 |
-
- name: nllb-1.
|
9 |
results: []
|
|
|
|
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
should probably proofread and complete it, then remove this comment. -->
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
- train_batch_size: 25
|
51 |
-
- eval_batch_size: 25
|
52 |
-
- seed: 42
|
53 |
-
- gradient_accumulation_steps: 120
|
54 |
-
- total_train_batch_size: 3000
|
55 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
-
- lr_scheduler_type: linear
|
57 |
-
- training_steps: 1500
|
58 |
-
- mixed_precision_training: Native AMP
|
59 |
-
|
60 |
-
### Training results
|
61 |
-
|
62 |
-
| Training Loss | Epoch | Step | Validation Loss | Bleu Ach Eng | Bleu Lgg Eng | Bleu Lug Eng | Bleu Nyn Eng | Bleu Teo Eng | Bleu Eng Ach | Bleu Eng Lgg | Bleu Eng Lug | Bleu Eng Nyn | Bleu Eng Teo | Bleu Mean |
|
63 |
-
|:-------------:|:------:|:----:|:---------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:---------:|
|
64 |
-
| No log | 0.0667 | 100 | 1.1541 | 29.033 | 31.47 | 41.596 | 34.169 | 32.442 | 19.677 | 19.657 | 27.889 | 14.554 | 19.143 | 26.963 |
|
65 |
-
| No log | 1.0301 | 200 | 1.1570 | 27.473 | 31.853 | 41.934 | 32.575 | 31.606 | 20.25 | 20.634 | 28.592 | 13.672 | 19.997 | 26.859 |
|
66 |
-
| No log | 1.0968 | 300 | 1.1288 | 29.086 | 33.257 | 43.387 | 33.678 | 33.579 | 20.377 | 20.91 | 28.906 | 14.992 | 21.013 | 27.919 |
|
67 |
-
| No log | 2.0603 | 400 | 1.1620 | 28.122 | 31.46 | 42.491 | 33.304 | 32.331 | 20.282 | 21.604 | 29.577 | 14.961 | 20.94 | 27.507 |
|
68 |
-
| 0.7273 | 3.0237 | 500 | 1.1661 | 28.311 | 32.122 | 42.825 | 32.333 | 32.415 | 19.799 | 22.287 | 29.558 | 15.708 | 21.948 | 27.731 |
|
69 |
-
| 0.7273 | 3.0904 | 600 | 1.1652 | 28.593 | 30.62 | 41.964 | 33.383 | 32.08 | 21.142 | 21.8 | 30.215 | 14.717 | 21.744 | 27.626 |
|
70 |
-
| 0.7273 | 4.0538 | 700 | 1.2075 | 28.371 | 30.45 | 41.978 | 32.296 | 30.422 | 20.972 | 22.362 | 30.359 | 15.305 | 21.391 | 27.391 |
|
71 |
-
|
72 |
-
|
73 |
-
### Framework versions
|
74 |
-
|
75 |
-
- Transformers 4.40.1
|
76 |
-
- Pytorch 2.2.0
|
77 |
-
- Datasets 2.19.0
|
78 |
-
- Tokenizers 0.19.1
|
|
|
1 |
---
|
2 |
+
base_model: facebook/nllb-200-1.3B
|
|
|
|
|
|
|
|
|
3 |
model-index:
|
4 |
+
- name: translate-nllb-1.3b-salt
|
5 |
results: []
|
6 |
+
datasets:
|
7 |
+
- Sunbird/salt
|
8 |
---
|
9 |
|
10 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
# Model details
|
13 |
+
|
14 |
+
This machine translation model can convert single sentences from and to any of the following languages:
|
15 |
+
|
16 |
+
| ISO 693-3 | Language name |
|
17 |
+
| --- | --- |
|
18 |
+
| eng | English |
|
19 |
+
| ach | Acholi |
|
20 |
+
| lgg | Lugbara |
|
21 |
+
| lug | Luganda |
|
22 |
+
| nyn | Runyankole |
|
23 |
+
| teo | Ateso |
|
24 |
+
|
25 |
+
It was trained on the [SALT](http://huggingface.co/datasets/Sunbird/salt) dataset and a variety of
|
26 |
+
additional external data resources, including back-translated news articles, FLORES-200, MT560 and LAFAND-MT.
|
27 |
+
The base model was [facebok/nllb-200-1.3B](https://huggingface.co/facebook/nllb-200-1.3B),
|
28 |
+
with tokens adapted to add support for languages not originally included.
|
29 |
+
|
30 |
+
# Usage
|
31 |
+
|
32 |
+
# Evaluation metrics
|
33 |
+
|
34 |
+
Results on salt-dev:
|
35 |
+
|
36 |
+
| Source language | Target language | BLEU |
|
37 |
+
| --- | --- | --- |
|
38 |
+
| ach | eng | 28.371 |
|
39 |
+
| lgg | eng | 30.45 |
|
40 |
+
| lug | eng | 41.978 |
|
41 |
+
| nyn | eng |32.296 |
|
42 |
+
| teo | eng | 30.422 |
|
43 |
+
| eng | ach | 20.972 |
|
44 |
+
| eng | lgg | 22.362 |
|
45 |
+
| eng | lug | 30.359 |
|
46 |
+
| eng | nyn | 15.305 |
|
47 |
+
| eng | teo | 21.391 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|