--- library_name: transformers license: mit base_model: facebook/bart-large-xsum tags: - generated_from_trainer metrics: - rouge model-index: - name: highlight_summary_model_trained_on_reduced_data results: [] --- # highlight_summary_model_trained_on_reduced_data This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co./facebook/bart-large-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9996 - Rouge1: 0.4538 - Rouge2: 0.1996 - Rougel: 0.3416 - Rougelsum: 0.342 - Generated Length: 34.9394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Generated Length | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------------:| | No log | 1.0 | 263 | 2.0074 | 0.429 | 0.184 | 0.3353 | 0.3352 | 32.6742 | | 1.8594 | 2.0 | 526 | 1.9996 | 0.4538 | 0.1996 | 0.3416 | 0.342 | 34.9394 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1