File size: 1,474 Bytes
356a39c
 
 
3ec41d4
356a39c
 
 
 
 
 
 
 
 
 
 
 
3ec41d4
f700b8b
3ec41d4
356a39c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec41d4
 
356a39c
 
 
f700b8b
356a39c
 
bd36bf4
 
3ec41d4
 
 
 
bd36bf4
 
356a39c
 
3ec41d4
356a39c
f700b8b
3ec41d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
library_name: transformers
license: mit
base_model: facebook/bart-large-xsum
tags:
- generated_from_trainer
model-index:
- name: highlight_summary_model_trained_on_reduced_data
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# highlight_summary_model_trained_on_reduced_data

This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co./facebook/bart-large-xsum) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7400

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 274  | 1.7445          |
| 1.6984        | 2.0   | 548  | 1.7400          |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1