SultanR commited on
Commit
f2fa49e
·
verified ·
1 Parent(s): ed18c2b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -183
README.md CHANGED
@@ -1,199 +1,58 @@
1
  ---
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
 
 
 
35
 
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - allenai/tulu-3-sft-mixture
5
+ - allenai/llama-3.1-tulu-3-8b-preference-mixture
6
+ language:
7
+ - en
8
+ base_model:
9
+ - HuggingFaceTB/SmolLM2-1.7B
10
  library_name: transformers
11
+ tags:
12
+ - Tulu3
13
+ - Smollm
14
+ - SLMs
15
+ - Small
16
+ - Huggingface
17
+ - Allenai
18
+ pipeline_tag: text-generation
19
  ---
20
 
21
+ # SmolTulu-1.7b-v0 - Instruction Tuned & Aligned!
22
 
23
+ ![SmolTulu Banner](smoltulubannerv0.png)
24
 
25
+ SmolTulu-v0 is the first model in a series of models meant to leverage [AllenAI's Tulu 3 post-training pipeline](https://allenai.org/blog/tulu-3-technical) to tune the [base version of Huggingface's SmolLM2-1.7b](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B)! The post training pipeline AllenAI came up with seemed like something perfect to apply here.
26
 
27
+ This model scores the highest current score in IFEval while maintaining the extremely low contamination levels in Tulu 3 and SmolLM2! I've listed the datasets used to do both the SFT (supervised finetuning) and DPO (direct preference optimization) stages.
28
 
29
+ ## Why v0?
30
 
31
+ There's a few reasons on why I called this model v0:
32
 
33
+ 1. The model still lags behind the instruction tuned version of SmolLM2 in many other metrics.
34
+ 2. This model has only undergone SFT and DPO, the RLVR (reinforcement learning with verifiable rewards) stage was too computationally expensive to run on a model that could be better.
35
+ 3. Initial hyperparameter choice was naive, through some napkin math I've been able to find a much better learning rate that scales the one found in the Tulu 3 paper according to my computational resources better.
36
 
37
+ # Evaluation
38
 
39
+ TO PUT HERE
 
 
 
 
 
 
40
 
41
+ # Usage
42
 
43
+ Just like any Huggingface model, just run it using the transformers library:
44
 
45
+ ```python
46
+ # pip install transformers
47
+ from transformers import AutoModelForCausalLM, AutoTokenizer
48
+ checkpoint = "SultanR/SmolTulu-v0"
49
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
50
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
51
+ # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
52
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
53
+ inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
54
+ outputs = model.generate(inputs)
55
+ print(tokenizer.decode(outputs[0]))
56
+ ```
57
 
58
+ I will be uploading the model to Ollama and providing GGUF versions very soon.