SultanR commited on
Commit
c277209
·
verified ·
1 Parent(s): cef7eef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -11
README.md CHANGED
@@ -120,25 +120,25 @@ model-index:
120
 
121
  ![SmolTulu Banner](smoltulubanner.png)
122
 
123
- SmolTulu-1.7b-Instruct is the first model in a series of models meant to leverage [AllenAI's Tulu 3 post-training pipeline](https://allenai.org/blog/tulu-3-technical) to tune the [base version of Huggingface's SmolLM2-1.7b](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B)! The post training pipeline AllenAI came up with seemed like something perfect to apply here.
124
 
125
  This model scores the highest current score in both IFEval and GSM8k while maintaining the extremely low contamination levels in Tulu 3 and SmolLM2! I've listed the datasets used to do both the SFT (supervised finetuning) and DPO (direct preference optimization) stages.
126
 
127
- Something important to note, this model has only undergone SFT and DPO, the RLVR (reinforcement learning with verifiable rewards) stage was too computationally expensive to run properly.
128
 
129
  ## Evaluation
130
 
131
  I ran these evaluations using [SmolLM2's evaluation code](https://github.com/huggingface/smollm/tree/main/evaluation) for a more fair comparison.
132
 
133
- | Metric | SmolTulu-1.7b-Instruct | SmolLM2-1.7B-Instruct | Llama-1B-Instruct | Qwen2.5-1.5B-Instruct | SmolLM1-1.7B-Instruct |
134
- |:----------------------------|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|
135
- | IFEval (Average prompt/inst) | **67.7** | 56.7 | 53.5 | 47.4 | 23.1 |
136
- | GSM8K (5-shot) | **51.6** | 48.2 | 26.8 | 42.8 | 4.6 |
137
- | PIQA | 72.2 | **74.4** | 72.3 | 73.2 | 71.6 |
138
- | BBH (3-shot) | 33.8 | 32.2 | 27.6 | **35.3** | 25.7 |
139
- | ARC (Average) | 51.5 | **51.7** | 41.6 | 46.2 | 43.7 |
140
- | HellaSwag | 61.1 | **66.1** | 56.1 | 60.9 | 55.5 |
141
- | MMLU-Pro (MCF) | 17.4 | 19.3 | 12.7 | **24.2** | 11.7 |
142
 
143
  ## Usage
144
 
 
120
 
121
  ![SmolTulu Banner](smoltulubanner.png)
122
 
123
+ SmolTulu-1.7b-Instruct is the first model in a series of models meant to leverage [AllenAI's Tulu 3 post-training pipeline](https://arxiv.org/abs/2411.15124) to tune the [base version of Huggingface's SmolLM2-1.7b](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B)! The post training pipeline AllenAI came up with seemed like something perfect to apply here.
124
 
125
  This model scores the highest current score in both IFEval and GSM8k while maintaining the extremely low contamination levels in Tulu 3 and SmolLM2! I've listed the datasets used to do both the SFT (supervised finetuning) and DPO (direct preference optimization) stages.
126
 
127
+ Something important to note, this model has only undergone SFT and DPO! Find the RLVR version here, [SmolTulu-1.7b-Reinforced](https://huggingface.co/SultanR/SmolTulu-1.7b-Reinforced)
128
 
129
  ## Evaluation
130
 
131
  I ran these evaluations using [SmolLM2's evaluation code](https://github.com/huggingface/smollm/tree/main/evaluation) for a more fair comparison.
132
 
133
+ | Metric | SmolTulu-1.7b-Instruct | SmolTulu-1.7b-Reinforced | SmolLM2-1.7B-Instruct | Llama-1B-Instruct | Qwen2.5-1.5B-Instruct | SmolLM1-1.7B-Instruct |
134
+ |:----------------------------|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|
135
+ | ARC (Average) | 51.5 | 51.1 | **51.7** | 41.6 | 46.2 | 43.7 |
136
+ | BBH (3-shot) | 33.8 | 33.4 | 32.2 | 27.6 | **35.3** | 25.7 |
137
+ | GSM8K (5-shot) | 51.6 | **61.0** | 48.2 | 26.8 | 42.8 | 4.6 |
138
+ | HellaSwag | 61.1 | 60.4 | **66.1** | 56.1 | 60.9 | 55.5 |
139
+ | IFEval (Average prompt/inst) | 67.7 | **69.3** | 56.7 | 53.5 | 47.4 | 23.1 |
140
+ | MMLU-Pro (MCF) | 17.4 | 17.3 | 19.3 | 12.7 | **24.2** | 11.7 |
141
+ | PIQA | 72.2 | 72.1 | **74.4** | 72.3 | 73.2 | 71.6 |
142
 
143
  ## Usage
144