File size: 1,186 Bytes
1c6b1ad ed96e27 1c6b1ad ed96e27 faa69e4 1c6b1ad ed96e27 1c6b1ad ed96e27 4208fdf ed96e27 1c6b1ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
---
license: cc-by-nc-sa-4.0
---
You can try listening to the performance of this model [here](./example_audio)
How to use the model?<br>
Try it with [ZFTurbo's Music-Source-Separation-Training](https://github.com/ZFTurbo/Music-Source-Separation-Training)
Description: The model is used to separate aspiration, which will be useful for mixing to some mixrs.<br>
Instruments: aspiration, other<br>
Dataset: My own datasets(117 songs for training and 17 songs for validation).<br>
Metrics: Based on the SDR of 17 songs for validation.<br>
Finetuned from: `model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt`<br>
Configs: [config_aspiration_mel_band_roformer.yaml](./config_aspiration_mel_band_roformer.yaml)
Model: [aspiration_mel_band_roformer_sdr_18.9845.ckpt](./aspiration_mel_band_roformer_sdr_18.9845.ckpt)<br>
Epoch: 123<br>
Instr SDR aspiration: 9.8554<br>
Instr SDR other: 28.1136<br>
SDR Avg: 18.9845<br>
Model: [aspiration_mel_band_roformer_less_aggr_sdr_18.1201.ckpt](./aspiration_mel_band_roformer_less_aggr_sdr_18.1201.ckpt)<br>
Epoch: 27<br>
Instr SDR aspiration: 9.0704<br>
Instr SDR other: 27.1699<br>
SDR Avg: 18.1201<br>
Training logs:
![image](./training_logs.png)
|