--- base_model: nomic-ai/modernbert-embed-base language: - fr library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_ndcg@15 - cosine_ndcg@20 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:47560 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: Pourquoi l'enfant de Jéroboam sera-t-il le seul de sa maison à être enterré? sentences: - Nathan le prophète. - Parce qu'il est le seul de la maison de Jéroboam en qui se soit trouvé quelque chose de bon devant l'Éternel, le Dieu d'Israël. - Deux ans. - source_sentence: Que dit le texte sur la foi capable de transporter des montagnes sans charité? sentences: - Urie était un Héthien. - Il dit que même avec une foi capable de transporter des montagnes, sans la charité, cela ne vaut rien. - David est allé se présenter devant l'Éternel et a exprimé son humilité et sa gratitude envers Dieu. - source_sentence: Quels sont les noms des fils de Schobal? sentences: - Reaja, Jachath, Achumaï et Lahad. - Le côté du midi échut à Obed-Édom, et la maison des magasins à ses fils. - Meschélémia avait dix-huit fils et frères vaillants. - source_sentence: Qui a succédé au roi Asa après sa mort? sentences: - 'L''un dit: Moi, je suis de Paul! Et un autre: Moi, d''Apollos!' - 'Neuf fils: Zemira, Joasch, Éliézer, Éljoénaï, Omri, Jerémoth, Abija, Anathoth et Alameth, enregistrés au nombre de vingt mille deux cents.' - Josaphat, son fils. - source_sentence: Quelles tâches les Lévites devaient-ils accomplir dans le service de la maison de l'Éternel? sentences: - Ils devaient prendre soin des parvis et des chambres, purifier toutes les choses saintes, s'occuper des pains de proposition, de la fleur de farine pour les offrandes, des galettes sans levain, des gâteaux cuits sur la plaque et des gâteaux frits, et de toutes les mesures de capacité et de longueur. - Les chefs des maisons paternelles, les chefs des tribus d'Israël, les chefs de milliers et de centaines, et les intendants du roi. - Les enfants sont considérés comme saints. co2_eq_emissions: emissions: 11.494424944753328 energy_consumed: 0.20511474053343792 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz ram_total_size: 7.6847381591796875 hours_used: 6.806 hardware_used: 1 x NVIDIA GeForce GTX 1660 Ti model-index: - name: modernbert-embed-base-bible results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.17498667614141056 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.24835672410730147 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.2762480014212116 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.320305560490318 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.17498667614141056 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.08278557470243382 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.05524960028424231 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.0320305560490318 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.17498667614141056 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.24835672410730147 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.2762480014212116 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.320305560490318 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.24430049048684818 name: Cosine Ndcg@10 - type: cosine_ndcg@15 value: 0.2525347835304927 name: Cosine Ndcg@15 - type: cosine_ndcg@20 value: 0.2574496509992833 name: Cosine Ndcg@20 - type: cosine_mrr@10 value: 0.2204687601338871 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.22764969395073778 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.17161129863208385 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.24018475750577367 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.2719843666725884 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.31621957718955407 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.17161129863208385 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.08006158583525788 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.05439687333451768 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.03162195771895541 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.17161129863208385 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.24018475750577367 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.2719843666725884 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.31621957718955407 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.23947113373513576 name: Cosine Ndcg@10 - type: cosine_ndcg@15 value: 0.24636222462199156 name: Cosine Ndcg@15 - type: cosine_ndcg@20 value: 0.2517242130957284 name: Cosine Ndcg@20 - type: cosine_mrr@10 value: 0.2154852845384024 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2225725360678114 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.16024160596908865 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.22757150470776336 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.2602593711138746 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.3075146562444484 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.16024160596908865 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.07585716823592112 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.052051874222774915 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.030751465624444838 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.16024160596908865 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.22757150470776336 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.2602593711138746 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.3075146562444484 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.22844579790475078 name: Cosine Ndcg@10 - type: cosine_ndcg@15 value: 0.2357050364715922 name: Cosine Ndcg@15 - type: cosine_ndcg@20 value: 0.24051535612507915 name: Cosine Ndcg@20 - type: cosine_mrr@10 value: 0.20381231547513284 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.21077486383464478 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.14372002131817374 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.20465446793391368 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.23307869959140168 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.279445727482679 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.14372002131817374 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.06821815597797122 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.04661573991828033 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.0279445727482679 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.14372002131817374 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.20465446793391368 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.23307869959140168 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.279445727482679 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.20572968417646773 name: Cosine Ndcg@10 - type: cosine_ndcg@15 value: 0.21411686675503838 name: Cosine Ndcg@15 - type: cosine_ndcg@20 value: 0.21935674398662894 name: Cosine Ndcg@20 - type: cosine_mrr@10 value: 0.1828928000406064 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.19012440317942259 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.11067685201634393 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.15953100017765146 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.18617871735654645 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.22721620181204477 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.11067685201634393 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.05317700005921715 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.03723574347130929 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.022721620181204476 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.11067685201634393 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.15953100017765146 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.18617871735654645 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.22721620181204477 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.16327341570689552 name: Cosine Ndcg@10 - type: cosine_ndcg@15 value: 0.1699977455983759 name: Cosine Ndcg@15 - type: cosine_ndcg@20 value: 0.17462327712912765 name: Cosine Ndcg@20 - type: cosine_mrr@10 value: 0.1435284115422685 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.1500325081763102 name: Cosine Map@100 --- # modernbert-embed-base-bible This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co./nomic-ai/modernbert-embed-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co./nomic-ai/modernbert-embed-base) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** fr - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Steve77/modernbert-embed-base-bible") # Run inference sentences = [ "Quelles tâches les Lévites devaient-ils accomplir dans le service de la maison de l'Éternel?", "Ils devaient prendre soin des parvis et des chambres, purifier toutes les choses saintes, s'occuper des pains de proposition, de la fleur de farine pour les offrandes, des galettes sans levain, des gâteaux cuits sur la plaque et des gâteaux frits, et de toutes les mesures de capacité et de longueur.", "Les chefs des maisons paternelles, les chefs des tribus d'Israël, les chefs de milliers et de centaines, et les intendants du roi.", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.175 | 0.1716 | 0.1602 | 0.1437 | 0.1107 | | cosine_accuracy@3 | 0.2484 | 0.2402 | 0.2276 | 0.2047 | 0.1595 | | cosine_accuracy@5 | 0.2762 | 0.272 | 0.2603 | 0.2331 | 0.1862 | | cosine_accuracy@10 | 0.3203 | 0.3162 | 0.3075 | 0.2794 | 0.2272 | | cosine_precision@1 | 0.175 | 0.1716 | 0.1602 | 0.1437 | 0.1107 | | cosine_precision@3 | 0.0828 | 0.0801 | 0.0759 | 0.0682 | 0.0532 | | cosine_precision@5 | 0.0552 | 0.0544 | 0.0521 | 0.0466 | 0.0372 | | cosine_precision@10 | 0.032 | 0.0316 | 0.0308 | 0.0279 | 0.0227 | | cosine_recall@1 | 0.175 | 0.1716 | 0.1602 | 0.1437 | 0.1107 | | cosine_recall@3 | 0.2484 | 0.2402 | 0.2276 | 0.2047 | 0.1595 | | cosine_recall@5 | 0.2762 | 0.272 | 0.2603 | 0.2331 | 0.1862 | | cosine_recall@10 | 0.3203 | 0.3162 | 0.3075 | 0.2794 | 0.2272 | | cosine_ndcg@10 | 0.2443 | 0.2395 | 0.2284 | 0.2057 | 0.1633 | | cosine_ndcg@15 | 0.2525 | 0.2464 | 0.2357 | 0.2141 | 0.17 | | **cosine_ndcg@20** | **0.2574** | **0.2517** | **0.2405** | **0.2194** | **0.1746** | | cosine_mrr@10 | 0.2205 | 0.2155 | 0.2038 | 0.1829 | 0.1435 | | cosine_map@100 | 0.2276 | 0.2226 | 0.2108 | 0.1901 | 0.15 | ## Training Details ### Training Dataset #### json * Dataset: json * Size: 47,560 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------------------------------------------|:----------------------------------------------------| | Quels sont les noms des fils de Schobal? | Aljan, Manahath, Ébal, Schephi et Onam | | Quels sont les noms des fils de Tsibeon? | Ajja et Ana | | Qui est le fils d'Ana? | Dischon | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_768_cosine_ndcg@20 | dim_512_cosine_ndcg@20 | dim_256_cosine_ndcg@20 | dim_128_cosine_ndcg@20 | dim_64_cosine_ndcg@20 | |:----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.0538 | 10 | 12.274 | - | - | - | - | - | | 0.1076 | 20 | 11.5084 | - | - | - | - | - | | 0.1615 | 30 | 10.5276 | - | - | - | - | - | | 0.2153 | 40 | 9.0432 | - | - | - | - | - | | 0.2691 | 50 | 7.572 | - | - | - | - | - | | 0.3229 | 60 | 7.7696 | - | - | - | - | - | | 0.3767 | 70 | 6.5673 | - | - | - | - | - | | 0.4305 | 80 | 6.6586 | - | - | - | - | - | | 0.4844 | 90 | 5.5276 | - | - | - | - | - | | 0.5382 | 100 | 5.9891 | - | - | - | - | - | | 0.5920 | 110 | 5.2983 | - | - | - | - | - | | 0.6458 | 120 | 5.6242 | - | - | - | - | - | | 0.6996 | 130 | 5.498 | - | - | - | - | - | | 0.7534 | 140 | 4.4201 | - | - | - | - | - | | 0.8073 | 150 | 4.3818 | - | - | - | - | - | | 0.8611 | 160 | 4.2175 | - | - | - | - | - | | 0.9149 | 170 | 4.2341 | - | - | - | - | - | | 0.9687 | 180 | 4.3349 | - | - | - | - | - | | 0.9956 | 185 | - | 0.2664 | 0.2607 | 0.2508 | 0.2263 | 0.1796 | | 1.0269 | 190 | 4.6803 | - | - | - | - | - | | 1.0807 | 200 | 3.877 | - | - | - | - | - | | 1.1345 | 210 | 4.0309 | - | - | - | - | - | | 1.1884 | 220 | 4.0755 | - | - | - | - | - | | 1.2422 | 230 | 3.9068 | - | - | - | - | - | | 1.2960 | 240 | 4.188 | - | - | - | - | - | | 1.3498 | 250 | 4.3417 | - | - | - | - | - | | 1.4036 | 260 | 4.0526 | - | - | - | - | - | | 1.4575 | 270 | 3.3933 | - | - | - | - | - | | 1.5113 | 280 | 3.8309 | - | - | - | - | - | | 1.5651 | 290 | 3.5633 | - | - | - | - | - | | 1.6189 | 300 | 3.8179 | - | - | - | - | - | | 1.6727 | 310 | 4.0671 | - | - | - | - | - | | 1.7265 | 320 | 3.3919 | - | - | - | - | - | | 1.7804 | 330 | 2.6578 | - | - | - | - | - | | 1.8342 | 340 | 2.6953 | - | - | - | - | - | | 1.8880 | 350 | 2.8858 | - | - | - | - | - | | 1.9418 | 360 | 2.8933 | - | - | - | - | - | | **1.9956** | **370** | **2.9603** | **0.2775** | **0.2737** | **0.2637** | **0.2402** | **0.1916** | | 2.0538 | 380 | 3.3361 | - | - | - | - | - | | 2.1076 | 390 | 2.7904 | - | - | - | - | - | | 2.1615 | 400 | 3.0108 | - | - | - | - | - | | 2.2153 | 410 | 2.8917 | - | - | - | - | - | | 2.2691 | 420 | 3.0295 | - | - | - | - | - | | 2.3229 | 430 | 3.5609 | - | - | - | - | - | | 2.3767 | 440 | 2.7722 | - | - | - | - | - | | 2.4305 | 450 | 3.2115 | - | - | - | - | - | | 2.4844 | 460 | 2.6333 | - | - | - | - | - | | 2.5382 | 470 | 3.2503 | - | - | - | - | - | | 2.5920 | 480 | 2.7708 | - | - | - | - | - | | 2.6458 | 490 | 3.167 | - | - | - | - | - | | 2.6996 | 500 | 3.1447 | - | - | - | - | - | | 2.7534 | 510 | 2.0428 | - | - | - | - | - | | 2.8073 | 520 | 2.0001 | - | - | - | - | - | | 2.8611 | 530 | 2.0826 | - | - | - | - | - | | 2.9149 | 540 | 2.0853 | - | - | - | - | - | | 2.9687 | 550 | 2.2365 | - | - | - | - | - | | 2.9956 | 555 | - | 0.2660 | 0.2604 | 0.2509 | 0.2266 | 0.1810 | | 3.0269 | 560 | 2.762 | - | - | - | - | - | | 3.0807 | 570 | 2.1219 | - | - | - | - | - | | 3.1345 | 580 | 2.2908 | - | - | - | - | - | | 3.1884 | 590 | 2.6195 | - | - | - | - | - | | 3.2422 | 600 | 2.3468 | - | - | - | - | - | | 3.2960 | 610 | 2.7504 | - | - | - | - | - | | 3.3498 | 620 | 2.9486 | - | - | - | - | - | | 3.4036 | 630 | 2.7281 | - | - | - | - | - | | 3.4575 | 640 | 2.188 | - | - | - | - | - | | 3.5113 | 650 | 2.5494 | - | - | - | - | - | | 3.5651 | 660 | 2.426 | - | - | - | - | - | | 3.6189 | 670 | 2.6478 | - | - | - | - | - | | 3.6727 | 680 | 2.9209 | - | - | - | - | - | | 3.7265 | 690 | 2.3512 | - | - | - | - | - | | 3.7804 | 700 | 1.6746 | - | - | - | - | - | | 3.8342 | 710 | 1.739 | - | - | - | - | - | | 3.8880 | 720 | 1.951 | - | - | - | - | - | | 3.9418 | 730 | 1.9886 | - | - | - | - | - | | 3.9956 | 740 | 2.1022 | 0.2574 | 0.2517 | 0.2405 | 0.2194 | 0.1746 | * The bold row denotes the saved checkpoint. ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.205 kWh - **Carbon Emitted**: 0.011 kg of CO2 - **Hours Used**: 6.806 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce GTX 1660 Ti - **CPU Model**: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz - **RAM Size**: 7.68 GB ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.3.1 - Transformers: 4.48.0.dev0 - PyTorch: 2.5.1 - Accelerate: 1.2.1 - Datasets: 2.19.1 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```