StephenSKelley commited on
Commit
682bac2
1 Parent(s): 3e5a985

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -1
README.md CHANGED
@@ -4,9 +4,24 @@ tags:
4
  - generated_from_trainer
5
  datasets:
6
  - food101
 
 
7
  model-index:
8
  - name: my_awesome_food_model
9
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -15,6 +30,9 @@ should probably proofread and complete it, then remove this comment. -->
15
  # my_awesome_food_model
16
 
17
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset.
 
 
 
18
 
19
  ## Model description
20
 
@@ -44,6 +62,15 @@ The following hyperparameters were used during training:
44
  - lr_scheduler_warmup_ratio: 0.1
45
  - num_epochs: 3
46
 
 
 
 
 
 
 
 
 
 
47
  ### Framework versions
48
 
49
  - Transformers 4.26.0
 
4
  - generated_from_trainer
5
  datasets:
6
  - food101
7
+ metrics:
8
+ - accuracy
9
  model-index:
10
  - name: my_awesome_food_model
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: food101
17
+ type: food101
18
+ config: default
19
+ split: train[:5000]
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.884
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
30
  # my_awesome_food_model
31
 
32
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.6462
35
+ - Accuracy: 0.884
36
 
37
  ## Model description
38
 
 
62
  - lr_scheduler_warmup_ratio: 0.1
63
  - num_epochs: 3
64
 
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 2.6957 | 0.99 | 62 | 2.5513 | 0.828 |
70
+ | 1.8745 | 1.99 | 124 | 1.8179 | 0.878 |
71
+ | 1.6181 | 2.99 | 186 | 1.6462 | 0.884 |
72
+
73
+
74
  ### Framework versions
75
 
76
  - Transformers 4.26.0