from typing import Dict, List, Any from diffusers import AutoPipelineForText2Image import base64 import torch from PIL import Image import io class EndpointHandler(): def __init__(self, path=""): self.pipeline = AutoPipelineForText2Image.from_pretrained( path, torch_dtype=torch.float16, variant="fp16", use_safetensors=True ).to("cuda") # self.pipeline.load_textual_inversion(path) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str` or `list` of `str`): The textual prompt to invert negative_prompt (:obj: `str`): The negative prompt to invert the input prompt to num_inference_steps (:obj: `int`): The number of inference steps to perform Return: A :obj:`list` | `dict`: will be serialized and returned """ # get inputs inputs = data.pop("inputs", data) negative_prompt = data.pop("negative_prompt", None) num_inference_steps = data.pop("num_inference_steps", 50) with torch.no_grad(): images = self.pipeline(prompt=inputs, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps).images response = { "outputs": [{"prompt": inputs[i], "image": self.encode_img(images[i])} for i in range(len(images))] } return response def encode_img(self, img: Image) -> str: img_byte_array = io.BytesIO() img.save(img_byte_array, format="JPEG") img_byte_array = img_byte_array.getvalue() img_str = base64.b64encode(img_byte_array).decode("utf-8") return img_str