--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_financial_phrasebank results: [] datasets: - financial_phrasebank library_name: transformers --- # tps_sentimental_analysis This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the financial_phrasebank dataset. It achieves the following results on the evaluation set: - Loss: 0.2586 - Accuracy: 0.9604 ## Model description A fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) ## Intended uses & limitations Sentimental Analysis ## Training and evaluation data financial_phrasebank ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 114 | 0.5293 | 0.8230 | | No log | 2.0 | 228 | 0.0804 | 0.9779 | | No log | 3.0 | 342 | 0.0367 | 0.9867 | | No log | 4.0 | 456 | 0.1544 | 0.9646 | | 0.3241 | 5.0 | 570 | 0.0497 | 0.9912 | | 0.3241 | 6.0 | 684 | 0.0520 | 0.9912 | | 0.3241 | 7.0 | 798 | 0.0318 | 0.9912 | | 0.3241 | 8.0 | 912 | 0.0628 | 0.9912 | | 0.0218 | 9.0 | 1026 | 0.0777 | 0.9867 | | 0.0218 | 10.0 | 1140 | 0.0866 | 0.9867 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.1.0+cu118 - Tokenizers 0.13.3