Upload mmbench.py
Browse files
modified_xtuner/xtuner/tools/mmbench.py
ADDED
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
import os.path as osp
|
7 |
+
import re
|
8 |
+
import string
|
9 |
+
import time
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import pandas as pd
|
13 |
+
import torch
|
14 |
+
import tqdm
|
15 |
+
from huggingface_hub import snapshot_download
|
16 |
+
from mmengine import mkdir_or_exist
|
17 |
+
from mmengine.dist import (collect_results, get_dist_info, get_rank, init_dist,
|
18 |
+
master_only)
|
19 |
+
from mmengine.utils.dl_utils import set_multi_processing
|
20 |
+
from peft import PeftModel
|
21 |
+
from rich.console import Console
|
22 |
+
from rich.table import Table
|
23 |
+
from torch.utils.data import Dataset
|
24 |
+
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
|
25 |
+
BitsAndBytesConfig, SiglipImageProcessor,
|
26 |
+
SiglipVisionModel, Dinov2Model,
|
27 |
+
GenerationConfig)
|
28 |
+
|
29 |
+
from xtuner.dataset.utils import decode_base64_to_image, expand2square
|
30 |
+
from xtuner.model.utils import LoadWoInit, prepare_inputs_labels_for_multimodal
|
31 |
+
from xtuner.tools.utils import get_stop_criteria, is_cn_string
|
32 |
+
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX,
|
33 |
+
PROMPT_TEMPLATE)
|
34 |
+
|
35 |
+
TORCH_DTYPE_MAP = dict(
|
36 |
+
fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto')
|
37 |
+
|
38 |
+
|
39 |
+
def parse_args():
|
40 |
+
parser = argparse.ArgumentParser(description='MMBench')
|
41 |
+
parser.add_argument(
|
42 |
+
'model_name_or_path', help='Hugging Face model name or path')
|
43 |
+
parser.add_argument('--data-path', default=None, help='data path')
|
44 |
+
parser.add_argument('--work-dir', help='the dir to save results')
|
45 |
+
parser.add_argument('--llava', default=None, help='llava name or path')
|
46 |
+
parser.add_argument(
|
47 |
+
'--siglip', default=None, help='siglip visual encoder name or path')
|
48 |
+
parser.add_argument(
|
49 |
+
'--visual-select-layer', default=-2, help='visual select layer')
|
50 |
+
parser.add_argument(
|
51 |
+
'--dino', default=None, help='dino visual encoder name or path')
|
52 |
+
parser.add_argument(
|
53 |
+
'--prompt-template',
|
54 |
+
choices=PROMPT_TEMPLATE.keys(),
|
55 |
+
default=None,
|
56 |
+
help='Specify a prompt template')
|
57 |
+
parser.add_argument(
|
58 |
+
'--stop-words', nargs='+', type=str, default=[], help='Stop words')
|
59 |
+
parser.add_argument(
|
60 |
+
'--torch-dtype',
|
61 |
+
default='fp16',
|
62 |
+
choices=TORCH_DTYPE_MAP.keys(),
|
63 |
+
help='Override the default `torch.dtype` and load the model under '
|
64 |
+
'a specific `dtype`.')
|
65 |
+
parser.add_argument(
|
66 |
+
'--bits',
|
67 |
+
type=int,
|
68 |
+
choices=[4, 8, None],
|
69 |
+
default=None,
|
70 |
+
help='LLM bits')
|
71 |
+
parser.add_argument(
|
72 |
+
'--bot-name', type=str, default='BOT', help='Name for Bot')
|
73 |
+
parser.add_argument(
|
74 |
+
'--offload-folder',
|
75 |
+
default=None,
|
76 |
+
help='The folder in which to offload the model weights (or where the '
|
77 |
+
'model weights are already offloaded).')
|
78 |
+
parser.add_argument(
|
79 |
+
'--max-new-tokens',
|
80 |
+
type=int,
|
81 |
+
default=100,
|
82 |
+
help='Maximum number of new tokens allowed in generated text')
|
83 |
+
parser.add_argument(
|
84 |
+
'--seed',
|
85 |
+
type=int,
|
86 |
+
default=0,
|
87 |
+
help='Random seed for reproducible text generation')
|
88 |
+
parser.add_argument(
|
89 |
+
'--launcher',
|
90 |
+
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
91 |
+
default='none',
|
92 |
+
help='job launcher')
|
93 |
+
args = parser.parse_args()
|
94 |
+
return args
|
95 |
+
|
96 |
+
|
97 |
+
@master_only
|
98 |
+
def master_print(msg):
|
99 |
+
print(msg)
|
100 |
+
|
101 |
+
|
102 |
+
class MMBenchDataset(Dataset):
|
103 |
+
ABBRS = {
|
104 |
+
'coarse_perception': 'CP',
|
105 |
+
'finegrained_perception (instance-level)': 'FP-S',
|
106 |
+
'finegrained_perception (cross-instance)': 'FP-C',
|
107 |
+
'logic_reasoning': 'LR',
|
108 |
+
'relation_reasoning': 'RR',
|
109 |
+
'attribute_reasoning': 'AR',
|
110 |
+
'sketch_reasoning': 'Sketch Reasoning',
|
111 |
+
'scenery_building': 'Scenery & Building',
|
112 |
+
'food_clothes': 'Food & Clothes',
|
113 |
+
'historical_figure': 'Historical Figure',
|
114 |
+
'traditional_show': 'Traditional Show',
|
115 |
+
'calligraphy_painting': 'Calligraphy Painting',
|
116 |
+
'cultural_relic': 'Cultural Relic'
|
117 |
+
}
|
118 |
+
|
119 |
+
def __init__(self, data_file):
|
120 |
+
self.data_file = data_file
|
121 |
+
self.df = pd.read_csv(data_file, sep='\t')
|
122 |
+
self.split = 'dev' if 'answer' in self.df.iloc[0].keys() else 'test'
|
123 |
+
self.has_l2_category = 'l2-category' in self.df.columns.to_list()
|
124 |
+
|
125 |
+
def get_image(self, image):
|
126 |
+
while len(image) < 16:
|
127 |
+
image = self.df[self.df['index'] == int(image)]['image'].values
|
128 |
+
assert len(image) == 1
|
129 |
+
image = image[0]
|
130 |
+
image = decode_base64_to_image(image)
|
131 |
+
return image
|
132 |
+
|
133 |
+
def __len__(self):
|
134 |
+
return len(self.df)
|
135 |
+
|
136 |
+
def __getitem__(self, idx):
|
137 |
+
index = self.df.iloc[idx]['index']
|
138 |
+
image = self.df.iloc[idx]['image']
|
139 |
+
image = self.get_image(image)
|
140 |
+
question = self.df.iloc[idx]['question']
|
141 |
+
answer = self.df.iloc[idx]['answer'] if 'answer' in self.df.iloc[
|
142 |
+
0].keys() else None
|
143 |
+
category = self.df.iloc[idx]['category']
|
144 |
+
|
145 |
+
options = {
|
146 |
+
cand: self.load_from_df(idx, cand)
|
147 |
+
for cand in string.ascii_uppercase
|
148 |
+
if self.load_from_df(idx, cand) is not None
|
149 |
+
}
|
150 |
+
options_prompt = ''
|
151 |
+
for key, item in options.items():
|
152 |
+
options_prompt += f'{key}. {item}\n'
|
153 |
+
|
154 |
+
hint = self.load_from_df(idx, 'hint')
|
155 |
+
data = {
|
156 |
+
'img': image,
|
157 |
+
'question': question,
|
158 |
+
'answer': answer,
|
159 |
+
'options': options_prompt,
|
160 |
+
'category': category,
|
161 |
+
'options_dict': options,
|
162 |
+
'index': index,
|
163 |
+
'context': hint,
|
164 |
+
}
|
165 |
+
if self.has_l2_category:
|
166 |
+
data.update({'l2-category': self.df.iloc[idx]['l2-category']})
|
167 |
+
return data
|
168 |
+
|
169 |
+
def load_from_df(self, idx, key):
|
170 |
+
if key in self.df.iloc[idx] and not pd.isna(self.df.iloc[idx][key]):
|
171 |
+
return self.df.iloc[idx][key]
|
172 |
+
else:
|
173 |
+
return None
|
174 |
+
|
175 |
+
@master_only
|
176 |
+
def eval_result(self, result_df, show=True):
|
177 |
+
|
178 |
+
def calc_acc(df, group='category'):
|
179 |
+
assert group in ['overall', 'category', 'l2-category']
|
180 |
+
if group == 'overall':
|
181 |
+
res = {'Average': np.mean(df['hit'])}
|
182 |
+
else:
|
183 |
+
res = {}
|
184 |
+
abilities = list(set(df[group]))
|
185 |
+
abilities.sort()
|
186 |
+
for ab in abilities:
|
187 |
+
sub_df = df[df[group] == ab]
|
188 |
+
ab = self.ABBRS[ab] if ab in self.ABBRS else ab
|
189 |
+
res[ab] = np.mean(sub_df['hit'])
|
190 |
+
return res
|
191 |
+
|
192 |
+
def eval_sub_data(sub_data, answer_map):
|
193 |
+
lt = len(sub_data)
|
194 |
+
for i in range(lt):
|
195 |
+
item = sub_data.iloc[i]
|
196 |
+
match = re.search(r'([A-D]+)', item['prediction'])
|
197 |
+
pred = match.group(1) if match else ''
|
198 |
+
gt = answer_map[item['index']]
|
199 |
+
if gt != pred:
|
200 |
+
return 0
|
201 |
+
return 1
|
202 |
+
|
203 |
+
def show_result(ret_json):
|
204 |
+
show_dict = ret_json.copy()
|
205 |
+
table = Table(title=f' MMBench ({self.data_file}) ')
|
206 |
+
console = Console()
|
207 |
+
table.add_column('Category', justify='left')
|
208 |
+
table.add_column('Accuracy (%)', justify='right')
|
209 |
+
average = show_dict.pop('Average') * 100
|
210 |
+
table.add_row('Average', f'{average:.1f}')
|
211 |
+
table.add_section()
|
212 |
+
for cat_name, cat_acc in show_dict.items():
|
213 |
+
table.add_row(cat_name, f'{cat_acc * 100:.1f}')
|
214 |
+
with console.capture() as capture:
|
215 |
+
console.print(table, end='')
|
216 |
+
print('\n' + capture.get())
|
217 |
+
print('Note: Please be cautious if you use the results in papers, '
|
218 |
+
"since we don't use ChatGPT as a helper for choice "
|
219 |
+
'extraction')
|
220 |
+
|
221 |
+
data = result_df.sort_values(by='index')
|
222 |
+
data['prediction'] = [str(x) for x in data['prediction']]
|
223 |
+
for k in data.keys():
|
224 |
+
data[k.lower() if k not in 'ABCD' else k] = data.pop(k)
|
225 |
+
|
226 |
+
data_main = data[data['index'] < int(1e6)]
|
227 |
+
cate_map = {
|
228 |
+
i: c
|
229 |
+
for i, c in zip(self.df['index'], self.df['category'])
|
230 |
+
}
|
231 |
+
if self.has_l2_category:
|
232 |
+
l2_cate_map = {
|
233 |
+
i: c
|
234 |
+
for i, c in zip(self.df['index'], self.df['l2-category'])
|
235 |
+
}
|
236 |
+
answer_map = {
|
237 |
+
i: c
|
238 |
+
for i, c in zip(self.df['index'], self.df['answer'])
|
239 |
+
}
|
240 |
+
|
241 |
+
lt = len(data_main)
|
242 |
+
hit, tot = 0, 0
|
243 |
+
result = {}
|
244 |
+
for i in range(lt):
|
245 |
+
item_main = data_main.iloc[i]
|
246 |
+
idx = item_main['index']
|
247 |
+
assert idx not in result
|
248 |
+
sub_data = data[data['index'] % int(1e6) == idx]
|
249 |
+
ret = eval_sub_data(sub_data, answer_map)
|
250 |
+
result[idx] = ret
|
251 |
+
hit += ret
|
252 |
+
tot += 1
|
253 |
+
|
254 |
+
indices = data_main['index']
|
255 |
+
data_main = data_main.copy()
|
256 |
+
data_main['hit'] = [result[i] for i in indices]
|
257 |
+
main_idx = data_main['index']
|
258 |
+
data_main['category'] = [cate_map[i] for i in main_idx]
|
259 |
+
|
260 |
+
ret_json = calc_acc(data_main, 'overall')
|
261 |
+
|
262 |
+
if self.has_l2_category:
|
263 |
+
data_main['l2-category'] = [l2_cate_map[i] for i in main_idx]
|
264 |
+
l2 = calc_acc(data_main, 'l2-category')
|
265 |
+
ret_json.update(l2)
|
266 |
+
else:
|
267 |
+
leaf = calc_acc(data_main, 'category')
|
268 |
+
ret_json.update(leaf)
|
269 |
+
if show:
|
270 |
+
show_result(ret_json)
|
271 |
+
return ret_json
|
272 |
+
|
273 |
+
|
274 |
+
def main():
|
275 |
+
args = parse_args()
|
276 |
+
|
277 |
+
torch.manual_seed(args.seed)
|
278 |
+
|
279 |
+
if args.launcher != 'none':
|
280 |
+
set_multi_processing(distributed=True)
|
281 |
+
init_dist(args.launcher)
|
282 |
+
|
283 |
+
rank, world_size = get_dist_info()
|
284 |
+
torch.cuda.set_device(rank)
|
285 |
+
else:
|
286 |
+
rank = 0
|
287 |
+
world_size = 1
|
288 |
+
|
289 |
+
# build llm
|
290 |
+
quantization_config = None
|
291 |
+
load_in_8bit = False
|
292 |
+
if args.bits == 4:
|
293 |
+
quantization_config = BitsAndBytesConfig(
|
294 |
+
load_in_4bit=True,
|
295 |
+
load_in_8bit=False,
|
296 |
+
llm_int8_threshold=6.0,
|
297 |
+
llm_int8_has_fp16_weight=False,
|
298 |
+
bnb_4bit_compute_dtype=torch.float16,
|
299 |
+
bnb_4bit_use_double_quant=True,
|
300 |
+
bnb_4bit_quant_type='nf4')
|
301 |
+
elif args.bits == 8:
|
302 |
+
load_in_8bit = True
|
303 |
+
model_kwargs = {
|
304 |
+
'quantization_config': quantization_config,
|
305 |
+
'load_in_8bit': load_in_8bit,
|
306 |
+
'device_map': rank if world_size > 1 else 'auto',
|
307 |
+
'offload_folder': args.offload_folder,
|
308 |
+
'trust_remote_code': True,
|
309 |
+
'torch_dtype': TORCH_DTYPE_MAP[args.torch_dtype]
|
310 |
+
}
|
311 |
+
|
312 |
+
# build llm
|
313 |
+
with LoadWoInit():
|
314 |
+
llm = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,
|
315 |
+
**model_kwargs)
|
316 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
317 |
+
args.model_name_or_path,
|
318 |
+
trust_remote_code=True,
|
319 |
+
encode_special_tokens=True)
|
320 |
+
master_print(f'Load LLM from {args.model_name_or_path}')
|
321 |
+
|
322 |
+
llava_path = snapshot_download(
|
323 |
+
repo_id=args.llava) if not osp.isdir(args.llava) else args.llava
|
324 |
+
|
325 |
+
# build visual_encoder
|
326 |
+
if 'visual_encoder' in os.listdir(llava_path):
|
327 |
+
assert args.visual_encoder is None, (
|
328 |
+
"Please don't specify the `--visual-encoder` since passed "
|
329 |
+
'`--llava` contains a visual encoder!')
|
330 |
+
visual_encoder_path = osp.join(llava_path, 'visual_encoder')
|
331 |
+
else:
|
332 |
+
assert args.siglip is not None, (
|
333 |
+
'Please specify the `--siglip`!')
|
334 |
+
assert args.dino is not None, (
|
335 |
+
'Please specify the `--dino`!')
|
336 |
+
with LoadWoInit():
|
337 |
+
siglip = SiglipVisionModel.from_pretrained(
|
338 |
+
args.siglip,
|
339 |
+
torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
|
340 |
+
image_processor = SiglipImageProcessor.from_pretrained(
|
341 |
+
args.siglip)
|
342 |
+
master_print(f'Load siglip from {args.siglip}')
|
343 |
+
dino = Dinov2Model.from_pretrained(
|
344 |
+
args.dino,
|
345 |
+
torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
|
346 |
+
master_print(f'Load dino from {args.dino}')
|
347 |
+
|
348 |
+
# load adapter
|
349 |
+
if 'llm_adapter' in os.listdir(llava_path):
|
350 |
+
adapter_path = osp.join(llava_path, 'llm_adapter')
|
351 |
+
|
352 |
+
with LoadWoInit():
|
353 |
+
llm = PeftModel.from_pretrained(
|
354 |
+
llm, adapter_path, offload_folder=args.offload_folder)
|
355 |
+
|
356 |
+
master_print(f'Load LLM adapter from {args.llava}')
|
357 |
+
|
358 |
+
if 'visual_encoder_adapter' in os.listdir(llava_path):
|
359 |
+
adapter_path = osp.join(llava_path, 'visual_encoder_adapter')
|
360 |
+
visual_encoder = PeftModel.from_pretrained(
|
361 |
+
visual_encoder, adapter_path, offload_folder=args.offload_folder)
|
362 |
+
master_print(f'Load visual_encoder adapter from {args.llava}')
|
363 |
+
|
364 |
+
# build projector
|
365 |
+
projector_path = osp.join(llava_path, 'projector')
|
366 |
+
with LoadWoInit():
|
367 |
+
projector = AutoModel.from_pretrained(
|
368 |
+
projector_path, torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
|
369 |
+
master_print(f'Load projector from {args.llava}')
|
370 |
+
|
371 |
+
projector.cuda()
|
372 |
+
projector.eval()
|
373 |
+
|
374 |
+
siglip.cuda()
|
375 |
+
siglip.eval()
|
376 |
+
dino.cuda()
|
377 |
+
dino.eval()
|
378 |
+
|
379 |
+
llm.eval()
|
380 |
+
|
381 |
+
stop_words = args.stop_words
|
382 |
+
if args.prompt_template:
|
383 |
+
template = PROMPT_TEMPLATE[args.prompt_template]
|
384 |
+
stop_words += template.get('STOP_WORDS', [])
|
385 |
+
stop_criteria = get_stop_criteria(
|
386 |
+
tokenizer=tokenizer, stop_words=stop_words)
|
387 |
+
|
388 |
+
gen_config = GenerationConfig(
|
389 |
+
max_new_tokens=args.max_new_tokens,
|
390 |
+
do_sample=False,
|
391 |
+
eos_token_id=tokenizer.eos_token_id,
|
392 |
+
pad_token_id=tokenizer.pad_token_id
|
393 |
+
if tokenizer.pad_token_id is not None else tokenizer.eos_token_id,
|
394 |
+
)
|
395 |
+
|
396 |
+
# work_dir
|
397 |
+
if args.work_dir is not None:
|
398 |
+
# update configs according to CLI args if args.work_dir is not None
|
399 |
+
save_dir = args.work_dir
|
400 |
+
else:
|
401 |
+
# use config filename as default work_dir
|
402 |
+
save_dir = osp.join('./work_dirs',
|
403 |
+
osp.splitext(osp.basename(args.data_path))[0])
|
404 |
+
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime(time.time()))
|
405 |
+
save_dir = osp.join(save_dir, timestamp)
|
406 |
+
|
407 |
+
if rank == 0:
|
408 |
+
mkdir_or_exist(osp.abspath(save_dir))
|
409 |
+
print('=======================================================')
|
410 |
+
print(f'Dataset path: {osp.abspath(args.data_path)}\n'
|
411 |
+
f'Results will be saved to {osp.abspath(save_dir)}')
|
412 |
+
print('=======================================================')
|
413 |
+
|
414 |
+
args_path = osp.join(save_dir, 'args.json')
|
415 |
+
with open(args_path, 'w') as f:
|
416 |
+
json.dump(args.__dict__, f, indent=2)
|
417 |
+
|
418 |
+
results_xlsx_path = osp.join(save_dir, 'mmbench_result.xlsx')
|
419 |
+
results_json_path = osp.join(save_dir, 'mmbench_result.json')
|
420 |
+
|
421 |
+
dataset = MMBenchDataset(args.data_path)
|
422 |
+
|
423 |
+
results = []
|
424 |
+
n_samples = len(dataset)
|
425 |
+
per_rank_samples = math.ceil(n_samples / world_size)
|
426 |
+
|
427 |
+
per_rank_ids = range(per_rank_samples * rank,
|
428 |
+
min(n_samples, per_rank_samples * (rank + 1)))
|
429 |
+
for i in tqdm.tqdm(per_rank_ids, desc=f'Rank {rank}'):
|
430 |
+
data_sample = dataset[i]
|
431 |
+
if data_sample['context'] is not None:
|
432 |
+
text = data_sample['context'] + '\n' + data_sample[
|
433 |
+
'question'] + '\n' + data_sample['options']
|
434 |
+
else:
|
435 |
+
text = data_sample['question'] + '\n' + data_sample['options']
|
436 |
+
|
437 |
+
text = DEFAULT_IMAGE_TOKEN + '\n' + text
|
438 |
+
|
439 |
+
if is_cn_string(text):
|
440 |
+
text = text + '请直接回答选项字母。'
|
441 |
+
else:
|
442 |
+
text = text + ("Answer with the option's letter from the "
|
443 |
+
'given choices directly.')
|
444 |
+
|
445 |
+
if args.prompt_template:
|
446 |
+
prompt_text = ''
|
447 |
+
template = PROMPT_TEMPLATE[args.prompt_template]
|
448 |
+
prompt_text += template['INSTRUCTION'].format(
|
449 |
+
input=text, round=1, bot_name=args.bot_name)
|
450 |
+
else:
|
451 |
+
prompt_text = text
|
452 |
+
inputs = prompt_text
|
453 |
+
|
454 |
+
image = data_sample['img'].convert('RGB')
|
455 |
+
image = expand2square(
|
456 |
+
image, tuple(int(x * 255) for x in image_processor.image_mean))
|
457 |
+
image = image_processor.preprocess(
|
458 |
+
image, return_tensors='pt')['pixel_values'][0]
|
459 |
+
image = image.cuda().unsqueeze(0)
|
460 |
+
|
461 |
+
siglip_out = siglip(
|
462 |
+
image, output_hidden_states=True).hidden_states[args.visual_select_layer]
|
463 |
+
dino_out = dino(
|
464 |
+
image, output_hidden_states=True).hidden_states[-1][:, 1:]
|
465 |
+
visual_out = torch.cat((siglip_out, dino_out), dim=-1)
|
466 |
+
pixel_values = projector(visual_out)
|
467 |
+
|
468 |
+
chunk_encode = []
|
469 |
+
for idx, chunk in enumerate(inputs.split(DEFAULT_IMAGE_TOKEN)):
|
470 |
+
if idx == 0:
|
471 |
+
cur_encode = tokenizer.encode(chunk)
|
472 |
+
else:
|
473 |
+
cur_encode = tokenizer.encode(chunk, add_special_tokens=False)
|
474 |
+
chunk_encode.append(cur_encode)
|
475 |
+
assert len(chunk_encode) == 2
|
476 |
+
ids = []
|
477 |
+
for idx, cur_chunk_encode in enumerate(chunk_encode):
|
478 |
+
ids.extend(cur_chunk_encode)
|
479 |
+
if idx != len(chunk_encode) - 1:
|
480 |
+
ids.append(IMAGE_TOKEN_INDEX)
|
481 |
+
ids = torch.tensor(ids).cuda().unsqueeze(0)
|
482 |
+
mm_inputs = prepare_inputs_labels_for_multimodal(
|
483 |
+
llm=llm, input_ids=ids, pixel_values=pixel_values)
|
484 |
+
|
485 |
+
generate_output = llm.generate(
|
486 |
+
**mm_inputs,
|
487 |
+
generation_config=gen_config,
|
488 |
+
streamer=None,
|
489 |
+
bos_token_id=tokenizer.bos_token_id,
|
490 |
+
stopping_criteria=stop_criteria)
|
491 |
+
|
492 |
+
predict = tokenizer.decode(
|
493 |
+
generate_output[0], skip_special_tokens=True).strip()
|
494 |
+
cur_result = {}
|
495 |
+
cur_result['question'] = data_sample.get('question')
|
496 |
+
cur_result.update(data_sample.get('options_dict'))
|
497 |
+
cur_result['prediction'] = predict
|
498 |
+
if data_sample.get('category') is not None:
|
499 |
+
cur_result['category'] = data_sample.get('category')
|
500 |
+
if data_sample.get('l2-category') is not None:
|
501 |
+
cur_result['l2-category'] = data_sample.get('l2-category')
|
502 |
+
cur_result['index'] = data_sample.get('index')
|
503 |
+
cur_result['split'] = data_sample.get('split')
|
504 |
+
cur_result['answer'] = data_sample.get('answer')
|
505 |
+
results.append(cur_result)
|
506 |
+
|
507 |
+
results = collect_results(results, n_samples)
|
508 |
+
|
509 |
+
if get_rank() == 0:
|
510 |
+
|
511 |
+
results_df = pd.DataFrame(results)
|
512 |
+
with pd.ExcelWriter(results_xlsx_path, engine='openpyxl') as writer:
|
513 |
+
results_df.to_excel(writer, index=False)
|
514 |
+
|
515 |
+
if dataset.split == 'dev':
|
516 |
+
results_dict = dataset.eval_result(results_df, show=True)
|
517 |
+
with open(results_json_path, 'w') as f:
|
518 |
+
json.dump(results_dict, f, indent=2)
|
519 |
+
else:
|
520 |
+
print('All done!')
|
521 |
+
|
522 |
+
|
523 |
+
if __name__ == '__main__':
|
524 |
+
|
525 |
+
main()
|