|
|
|
import torch |
|
from mmengine.dataset import DefaultSampler |
|
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, |
|
LoggerHook, ParamSchedulerHook) |
|
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR |
|
from torch.optim import AdamW |
|
from transformers import (AutoModelForCausalLM, AutoTokenizer, |
|
BitsAndBytesConfig, SiglipImageProcessor, |
|
SiglipVisionModel, Dinov2Model) |
|
from peft import LoraConfig |
|
|
|
from xtuner.dataset import LLaVADataset |
|
from xtuner.dataset.collate_fns import default_collate_fn |
|
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory |
|
from xtuner.engine.hooks import DatasetInfoHook, EvaluateChatHook |
|
from xtuner.engine.runner import TrainLoop |
|
from xtuner.model import LLaVAModel |
|
from xtuner.utils import PROMPT_TEMPLATE |
|
|
|
|
|
|
|
|
|
|
|
llm_name_or_path = 'internlm/internlm2-1_8b' |
|
image_processor_path = 'google/siglip-so400m-patch14-384' |
|
siglip_path = 'google/siglip-so400m-patch14-384' |
|
dino_path = 'facebook/dinov2-large' |
|
|
|
|
|
data_root = './llava_data/' |
|
data_path = data_root + 'llava_v1_5_lrv_mix1008k.json' |
|
image_folder = data_root + 'llava_images' |
|
prompt_template = PROMPT_TEMPLATE.internlm2_chat |
|
max_length = int(2048 - (336 / 14)**2) |
|
|
|
|
|
batch_size = 8 |
|
accumulative_counts = 2 |
|
dataloader_num_workers = 4 |
|
max_epochs = 2 |
|
optim_type = AdamW |
|
lr = 2e-5 |
|
betas = (0.9, 0.999) |
|
weight_decay = 0.1 |
|
max_norm = 1 |
|
warmup_ratio = 0.03 |
|
|
|
|
|
save_steps = 500 |
|
save_total_limit = 2 |
|
|
|
|
|
evaluation_freq = 500 |
|
SYSTEM = '' |
|
evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg' |
|
evaluation_inputs = ['请描述一下这张照片', 'Please describe this picture'] |
|
|
|
|
|
|
|
|
|
tokenizer = dict( |
|
type=AutoTokenizer.from_pretrained, |
|
pretrained_model_name_or_path=llm_name_or_path, |
|
trust_remote_code=True, |
|
padding_side='right') |
|
|
|
image_processor = dict( |
|
type=SiglipImageProcessor.from_pretrained, |
|
pretrained_model_name_or_path=image_processor_path, |
|
trust_remote_code=True) |
|
|
|
model = dict( |
|
type=LLaVAModel, |
|
freeze_llm=False, |
|
freeze_visual_encoder=True, |
|
llm=dict( |
|
type=AutoModelForCausalLM.from_pretrained, |
|
pretrained_model_name_or_path=llm_name_or_path, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16, |
|
quantization_config=dict( |
|
type=BitsAndBytesConfig, |
|
load_in_4bit=True, |
|
load_in_8bit=False, |
|
llm_int8_threshold=6.0, |
|
llm_int8_has_fp16_weight=False, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type='nf4')), |
|
siglip=dict( |
|
type=SiglipVisionModel.from_pretrained, |
|
pretrained_model_name_or_path=siglip_path), |
|
dino=dict( |
|
type=Dinov2Model.from_pretrained, |
|
pretrained_model_name_or_path=dino_path), |
|
) |
|
|
|
|
|
|
|
|
|
llava_dataset = dict( |
|
type=LLaVADataset, |
|
data_path=data_path, |
|
image_folder=image_folder, |
|
tokenizer=tokenizer, |
|
image_processor=image_processor, |
|
dataset_map_fn=llava_map_fn, |
|
template_map_fn=dict( |
|
type=template_map_fn_factory, template=prompt_template), |
|
max_length=max_length, |
|
pad_image_to_square=False) |
|
|
|
train_dataloader = dict( |
|
batch_size=batch_size, |
|
num_workers=dataloader_num_workers, |
|
dataset=llava_dataset, |
|
sampler=dict(type=DefaultSampler, shuffle=True), |
|
collate_fn=dict(type=default_collate_fn)) |
|
|
|
|
|
|
|
|
|
|
|
optim_wrapper = dict( |
|
type=AmpOptimWrapper, |
|
optimizer=dict( |
|
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), |
|
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), |
|
accumulative_counts=accumulative_counts, |
|
loss_scale='dynamic', |
|
dtype='float16') |
|
|
|
|
|
|
|
param_scheduler = [ |
|
dict( |
|
type=LinearLR, |
|
start_factor=1e-5, |
|
by_epoch=True, |
|
begin=0, |
|
end=warmup_ratio * max_epochs, |
|
convert_to_iter_based=True), |
|
dict( |
|
type=CosineAnnealingLR, |
|
eta_min=0.0, |
|
by_epoch=True, |
|
begin=warmup_ratio * max_epochs, |
|
end=max_epochs, |
|
convert_to_iter_based=True) |
|
] |
|
|
|
|
|
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs) |
|
|
|
|
|
|
|
|
|
|
|
custom_hooks = [ |
|
dict(type=DatasetInfoHook, tokenizer=tokenizer), |
|
dict( |
|
type=EvaluateChatHook, |
|
tokenizer=tokenizer, |
|
image_processor=image_processor, |
|
every_n_iters=evaluation_freq, |
|
evaluation_inputs=evaluation_inputs, |
|
evaluation_images=evaluation_images, |
|
system=SYSTEM, |
|
prompt_template=prompt_template) |
|
] |
|
|
|
|
|
default_hooks = dict( |
|
|
|
timer=dict(type=IterTimerHook), |
|
|
|
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10), |
|
|
|
param_scheduler=dict(type=ParamSchedulerHook), |
|
|
|
checkpoint=dict( |
|
type=CheckpointHook, |
|
by_epoch=False, |
|
interval=save_steps, |
|
max_keep_ckpts=save_total_limit), |
|
|
|
sampler_seed=dict(type=DistSamplerSeedHook), |
|
) |
|
|
|
|
|
env_cfg = dict( |
|
|
|
cudnn_benchmark=False, |
|
|
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), |
|
|
|
dist_cfg=dict(backend='nccl'), |
|
) |
|
|
|
|
|
from mmengine.visualization import Visualizer, TensorboardVisBackend |
|
visualizer = dict( |
|
type=Visualizer, |
|
vis_backends=[dict(type=TensorboardVisBackend)] |
|
) |
|
|
|
|
|
log_level = 'INFO' |
|
|
|
|
|
load_from = None |
|
|
|
|
|
resume = False |
|
|
|
|
|
randomness = dict(seed=None, deterministic=False) |
|
|
|
|
|
log_processor = dict(by_epoch=False) |
|
|