File size: 7,384 Bytes
7e38877
 
12a0d79
 
 
928abca
9c7e52c
 
 
 
 
 
d9e2106
 
 
 
 
 
 
 
45b5767
 
 
9c7e52c
 
 
 
 
 
954f9f4
9c7e52c
69c10d4
9c7e52c
a0d7a21
 
 
9c7e52c
 
 
 
 
 
 
 
 
 
 
69c10d4
40c6b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c7e52c
37287d1
 
 
 
 
 
 
 
 
 
da411b9
 
69c10d4
da411b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69c10d4
da411b9
 
 
 
 
 
 
 
 
69c10d4
da411b9
69c10d4
da411b9
69c10d4
da411b9
 
 
 
 
 
 
69c10d4
da411b9
69c10d4
da411b9
69c10d4
da411b9
69c10d4
da411b9
69c10d4
da411b9
 
 
 
 
 
 
 
 
 
 
 
 
 
69c10d4
da411b9
69c10d4
da411b9
69c10d4
9c7e52c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
954f9f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
license: apache-2.0
datasets:
- liuhaotian/LLaVA-Pretrain
- liuhaotian/LLaVA-Instruct-150K
pipeline_tag: visual-question-answering
---
## Model
llava-dinov2-internlm2-7b-v1 is a LLaVA model fine-tuned from [InternLM2-Chat-7B](https://huggingface.co./internlm/internlm2-chat-7b) and [Dinov2-large](https://huggingface.co./facebook/dinov2-large) with [LLaVA-Pretrain](liuhaotian/LLaVA-Pretrain) and [LLaVA-Instruct](https://huggingface.co./datasets/liuhaotian/LLaVA-Instruct-150K) by [XTuner](https://github.com/InternLM/xtuner). I thank the help of [Zhihao Lin](https://github.com/LZHgrla) and [pppppM](https://github.com/pppppM) from the Xtuner team. I also thank the Huggingface transformers team for approving [my pull request](https://github.com/huggingface/transformers/pull/28504) so training Dinov2 in bf16 becomes possible.

I did not carefully tune the training hyperparameters but the model still show capability to solve some tasks. It shows that a visual encoder can be integrated with an LLM, even when the encoder is not aligned with natural language with contrastive learning like CLIP.

## Example

![5bb2f23dd595d389e6a9a0aadebd87c.png](https://cdn-uploads.huggingface.co/production/uploads/642a298ae5f33939cf3ee600/iOFZOwLGfEByCQ_2EkR7y.png)
Explain the photo in English:
![eeb555092886be02e8e6215d0fdb229.png](https://cdn-uploads.huggingface.co/production/uploads/642a298ae5f33939cf3ee600/CASHz1oxgowVS3n5e4LUq.png)
Explain the photo in Chinese:
![e943a2a36676345cf7f2db2dc4ce98a.png](https://cdn-uploads.huggingface.co/production/uploads/642a298ae5f33939cf3ee600/zqPVmKMxup0ww67a02ke-.png)

## Rank
![image/png](https://cdn-uploads.huggingface.co/production/uploads/642a298ae5f33939cf3ee600/ZS5wnKGQiLDqFb4vohAKM.png)

## Results
Model | MMBench Test (EN) | MMBench Dev (EN) | MMBench Test (CN) | MMBench Dev (CN) | CCBench Dev
------------- | ------------- | ------------- | ------------- | ------------- | -------------
LLaVA-v1.5-7B | 67.7 | 69.2 | 61.0 | 59.7 | 28.4
LLaVA-InternLM-7B | 69.0 | 68.5 | 66.7 | 63.8 | 37.3
LLaVA-InternLM2-7B | 73.3 | 74.6 | 71.7 | 72.0 | 42.5
llava-dinov2-internlm2-7b-v1 | 64.0 | 65.2 | 62.9 | 61.6 | 45.3

## Installation
```
git clone https://github.com/InternLM/xtuner
pip install -e ./xtuner[deepspeed]
cd ./xtuner
# Now replace the source code files with the modifed version in modified_xtuner_code directory
```

## Chat
```
xtuner chat internlm/internlm2-chat-7b \
--visual-encoder facebook/dinov2-large\
--llava ./lora_and_projector \
--prompt-template internlm2_chat \
--image $IMAGE_PATH
```

## Common Errors
1. 
```
command error: 'libGL.so.1: cannot open shared object file: No such file or directory'!
```
You can solve it by
```
# For Ubuntu
sudo apt-get update
sudo apt-get install libgl1-mesa-glx

# For CentOS and Fedora
sudo yum install mesa-libGL
```

2.
```
Error: mkl-service + Intel(R) MKL: MKL_THREADING_LAYER=INTEL is incompatible with libgomp.so.1 library.
        Try to import numpy first or set the threading layer accordingly. Set MKL_SERVICE_FORCE_INTEL to force it.
```
You can solve it by reinstall numpy.

3.
```
ImportError: 
InternLM2Converter requires the protobuf library but it was not found in your environment. Checkout the instructions on the
```
You just need
```
pip install protobuf
```

## Data prepration

1. File structure

```
./data/llava_data
β”œβ”€β”€ LLaVA-Pretrain
β”‚Β Β  β”œβ”€β”€ blip_laion_cc_sbu_558k.json
β”‚Β Β  β”œβ”€β”€ blip_laion_cc_sbu_558k_meta.json
β”‚Β Β  └── images
β”œβ”€β”€ LLaVA-Instruct-150K
β”‚Β Β  └── llava_v1_5_mix665k.json
└── llava_images
 Β Β  β”œβ”€β”€ coco
 Β Β  β”‚   └── train2017
 Β Β  β”œβ”€β”€ gqa
 Β Β  β”‚   └── images
 Β Β  β”œβ”€β”€ ocr_vqa
 Β Β  β”‚   └── images
 Β Β  β”œβ”€β”€ textvqa
 Β Β  β”‚   └── train_images
 Β Β  └── vg
 Β Β   Β Β  β”œβ”€β”€ VG_100K
 Β Β      └── VG_100K_2
```

2. Pretrain Data

LLaVA-Pretrain

```shell
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co./datasets/liuhaotian/LLaVA-Pretrain --depth=1
```

3. Finetune Data

3.1 Text data

    LLaVA-Instruct-150K

      ```shell
      # Make sure you have git-lfs installed (https://git-lfs.com)
      git lfs install
      git clone https://huggingface.co./datasets/liuhaotian/LLaVA-Instruct-150K --depth=1
      ```

3.2 Image data

   3.2.1 COCO (coco): [train2017](http://images.cocodataset.org/zips/train2017.zip)

   3.2.2 GQA (gqa): [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip)

   3.2.3 OCR-VQA (ocr_vqa): [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing)

      ⚠️⚠️⚠️ Modify the name of OCR-VQA's images to keep the extension as `.jpg`!

         ```shell
         #!/bin/bash
         ocr_vqa_path="<your-directory-path>"

         find "$target_dir" -type f | while read file; do
             extension="${file##*.}"
             if [ "$extension" != "jpg" ]
             then
                 cp -- "$file" "${file%.*}.jpg"
             fi
         done
         ```

   3.2.4 TextVQA (textvqa): [train_val_images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)

   3.2.5 VisualGenome (VG): [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)

## Cheers! Now train your own model!
1. Alignment module pretraining
```
NPROC_PER_NODE=8 xtuner train ./llava_internlm2_chat_7b_dinov2_e1_gpu8_pretrain.py --deepspeed deepspeed_zero2
```
The checkpoint and tensorboard logs are saved by default in ./work_dirs/. I only train it for 1 epoch to be same as the original LLaVA paper. Some researches also report that training for multiple epochs will make the model overfit the training dataset and perform worse in other domains.

Here is my loss curve:
![pretraining loss curve](https://cdn-uploads.huggingface.co/production/uploads/642a298ae5f33939cf3ee600/l5TdcjzCJmrCVdNb37Ey3.png)

2. Instruction following fine-tuning
```
NPROC_PER_NODE=8 xtuner train ./llava_internlm2_chat_7b_dinov2_e1_gpu8_finetune.py --deepspeed deepspeed_zero2
```
Here is my loss curve (the curve fluctuates strongly because the batch size is small, and I only record batch loss instead of epoch loss):
![4dc9f714efb73ad629baf7462e4ae9a.png](https://cdn-uploads.huggingface.co/production/uploads/642a298ae5f33939cf3ee600/Yn1imlEutA7zC7tfapT2W.png)

## Transfer the checkpoints to Huggingface safetensor format
```
xtuner convert pth_to_hf ./llava_internlm2_chat_7b_dinov2_e1_gpu8_finetune.py ./work_dirs/epoch_1.pth ./my_lora_and_projector
```
The adapter still need to be used with the internlm/internlm2-chat-7b and facebook/dinov2-large models. I have not tried to merge them yet but it is possible with Xtuner, see this [tutorial](https://github.com/InternLM/xtuner/blob/f63859b3d0cb39cbac709e3850f3fe01de1023aa/xtuner/configs/llava/README.md#L4).

## MMBench Evaluation
```
xtuner mmbench internlm/internlm2-chat-7b \
--visual-encoder facebook/dinov2-large \
--llava ./my_lora_and_projector \
--prompt-template internlm2_chat \
--data-path $MMBENCH_DATA_PATH \
--work-dir $RESULT_PATH
```

## Deployment
Xtuner team is developing HF chatbot (based on Huggingface transformers) and LMDeploy chatbot (based on TurboMind). I am waiting for their final version of API.