zhjohnchan commited on
Commit
9e08858
·
verified ·
1 Parent(s): a3628cd

Upload 4 files

Browse files
configuration_chexagent.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ Phi model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ "microsoft/phi-2": "https://huggingface.co/microsoft/phi-2/resolve/main/config.json",
25
+ }
26
+
27
+
28
+ class CheXagentConfig(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
31
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
32
+ defaults will yield a similar configuration to that of the Phi
33
+ [microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 51200):
38
+ Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`PhiModel`].
40
+ hidden_size (`int`, *optional*, defaults to 2048):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 8192):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 24):
45
+ Number of hidden layers in the Transformer decoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer decoder.
48
+ num_key_value_heads (`int`, *optional*):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
55
+ `num_attention_heads`.
56
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
57
+ Dropout probability for mlp outputs.
58
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
59
+ The dropout ratio for the embeddings.
60
+ attention_dropout (`float`, *optional*, defaults to 0.0):
61
+ The dropout ratio after computing the attention scores.
62
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
63
+ The non-linear activation function (function or string) in the decoder.
64
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
65
+ The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
66
+ tokens.
67
+ initializer_range (`float`, *optional*, defaults to 0.02):
68
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
69
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
70
+ The epsilon used by the rms normalization layers.
71
+ use_cache (`bool`, *optional*, defaults to `True`):
72
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
73
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
74
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
75
+ Whether to tie weight embeddings
76
+ rope_theta (`float`, *optional*, defaults to 10000.0):
77
+ The base period of the RoPE embeddings.
78
+ rope_scaling (`Dict`, *optional*):
79
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
80
+ strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
81
+ is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
82
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
83
+ these scaling strategies behave:
84
+ https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
85
+ is an experimental feature, subject to breaking API changes in future versions.
86
+ partial_rotary_factor (`float`, *optional*, defaults to 0.5):
87
+ Percentage of the query and keys which will have rotary embedding.
88
+ qk_layernorm (`bool`, *optional*, defaults to `False`):
89
+ Whether or not to normalize the Queries and Keys after projecting the hidden states.
90
+ bos_token_id (`int`, *optional*, defaults to 1):
91
+ Denotes beginning of sequences token id.
92
+ eos_token_id (`int`, *optional*, defaults to 2):
93
+ Denotes end of sequences token id.
94
+ Example:
95
+ ```python
96
+ >>> from transformers import PhiModel, PhiConfig
97
+ >>> # Initializing a Phi-1 style configuration
98
+ >>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
99
+ >>> # Initializing a model from the configuration
100
+ >>> model = PhiModel(configuration)
101
+ >>> # Accessing the model configuration
102
+ >>> configuration = model.config
103
+ ```"""
104
+
105
+ model_type = "phi"
106
+ keys_to_ignore_at_inference = ["past_key_values"]
107
+
108
+ def __init__(
109
+ self,
110
+ vocab_size=51200,
111
+ hidden_size=2048,
112
+ intermediate_size=8192,
113
+ num_hidden_layers=24,
114
+ num_attention_heads=32,
115
+ num_key_value_heads=None,
116
+ resid_pdrop=0.0,
117
+ embd_pdrop=0.0,
118
+ attention_dropout=0.0,
119
+ hidden_act="gelu_new",
120
+ max_position_embeddings=2048,
121
+ initializer_range=0.02,
122
+ layer_norm_eps=1e-5,
123
+ use_cache=True,
124
+ tie_word_embeddings=False,
125
+ rope_theta=10000.0,
126
+ rope_scaling=None,
127
+ partial_rotary_factor=0.5,
128
+ qk_layernorm=False,
129
+ bos_token_id=1,
130
+ eos_token_id=2,
131
+ **kwargs,
132
+ ):
133
+ self.vocab_size = vocab_size
134
+ self.hidden_size = hidden_size
135
+ self.intermediate_size = intermediate_size
136
+ self.num_hidden_layers = num_hidden_layers
137
+ self.num_attention_heads = num_attention_heads
138
+
139
+ if num_key_value_heads is None:
140
+ num_key_value_heads = num_attention_heads
141
+
142
+ self.num_key_value_heads = num_key_value_heads
143
+ self.resid_pdrop = resid_pdrop
144
+ self.embd_pdrop = embd_pdrop
145
+ self.attention_dropout = attention_dropout
146
+ self.hidden_act = hidden_act
147
+ self.max_position_embeddings = max_position_embeddings
148
+ self.initializer_range = initializer_range
149
+ self.layer_norm_eps = layer_norm_eps
150
+ self.use_cache = use_cache
151
+ self.rope_theta = rope_theta
152
+ self.rope_scaling = rope_scaling
153
+ self.partial_rotary_factor = partial_rotary_factor
154
+ self.qk_layernorm = qk_layernorm
155
+ self._rope_scaling_validation()
156
+
157
+ super().__init__(
158
+ bos_token_id=bos_token_id,
159
+ eos_token_id=eos_token_id,
160
+ tie_word_embeddings=tie_word_embeddings,
161
+ **kwargs,
162
+ )
163
+
164
+ # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
165
+ def _rope_scaling_validation(self):
166
+ """
167
+ Validate the `rope_scaling` configuration.
168
+ """
169
+ if self.rope_scaling is None:
170
+ return
171
+
172
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
173
+ raise ValueError(
174
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
175
+ f"got {self.rope_scaling}"
176
+ )
177
+ rope_scaling_type = self.rope_scaling.get("type", None)
178
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
179
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
180
+ raise ValueError(
181
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
182
+ )
183
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
184
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
modeling_chexagent.py ADDED
@@ -0,0 +1,1138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch Phi model."""
17
+
18
+ import math
19
+ from typing import List, Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.nn.functional as F
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+ from torch.nn import CrossEntropyLoss
26
+ from transformers.activations import ACT2FN
27
+ from transformers.cache_utils import Cache, DynamicCache
28
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
29
+ from transformers.modeling_outputs import (
30
+ BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ )
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (
35
+ add_start_docstrings,
36
+ add_start_docstrings_to_model_forward,
37
+ is_flash_attn_greater_or_equal_2_10,
38
+ logging,
39
+ )
40
+
41
+ from .configuration_chexagent import CheXagentConfig
42
+ from .modeling_visual import CLIPModel
43
+ from .tokenization_chexagent import CheXagentTokenizer
44
+
45
+ try:
46
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
47
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
48
+ except:
49
+ pass
50
+
51
+ logger = logging.get_logger(__name__)
52
+
53
+ _CHECKPOINT_FOR_DOC = "microsoft/phi-2"
54
+ _CONFIG_FOR_DOC = "CheXagentConfig"
55
+
56
+ PHI_PRETRAINED_MODEL_ARCHIVE_LIST = [
57
+ "microsoft/phi-2",
58
+ # See all Phi models at https://huggingface.co/models?filter=phi
59
+ ]
60
+
61
+
62
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
63
+ def _get_unpad_data(attention_mask):
64
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
65
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
66
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
67
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
68
+ return (
69
+ indices,
70
+ cu_seqlens,
71
+ max_seqlen_in_batch,
72
+ )
73
+
74
+
75
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Phi
76
+ class PhiRotaryEmbedding(nn.Module):
77
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
78
+ super().__init__()
79
+
80
+ self.dim = dim
81
+ self.max_position_embeddings = max_position_embeddings
82
+ self.base = base
83
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
84
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
85
+
86
+ # Build here to make `torch.jit.trace` work.
87
+ self._set_cos_sin_cache(
88
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
89
+ )
90
+
91
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
92
+ self.max_seq_len_cached = seq_len
93
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
94
+
95
+ freqs = torch.outer(t, self.inv_freq)
96
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
97
+ emb = torch.cat((freqs, freqs), dim=-1)
98
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
99
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
100
+
101
+ def forward(self, x, seq_len=None):
102
+ # x: [bs, num_attention_heads, seq_len, head_size]
103
+ if seq_len > self.max_seq_len_cached:
104
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
105
+
106
+ return (
107
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
108
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
109
+ )
110
+
111
+
112
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Phi
113
+ class PhiLinearScalingRotaryEmbedding(PhiRotaryEmbedding):
114
+ """PhiRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
115
+
116
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
117
+ self.scaling_factor = scaling_factor
118
+ super().__init__(dim, max_position_embeddings, base, device)
119
+
120
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
121
+ self.max_seq_len_cached = seq_len
122
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
123
+ t = t / self.scaling_factor
124
+
125
+ freqs = torch.outer(t, self.inv_freq)
126
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
127
+ emb = torch.cat((freqs, freqs), dim=-1)
128
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
129
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
130
+
131
+
132
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Phi
133
+ class PhiDynamicNTKScalingRotaryEmbedding(PhiRotaryEmbedding):
134
+ """PhiRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
135
+
136
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
137
+ self.scaling_factor = scaling_factor
138
+ super().__init__(dim, max_position_embeddings, base, device)
139
+
140
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
141
+ self.max_seq_len_cached = seq_len
142
+
143
+ if seq_len > self.max_position_embeddings:
144
+ base = self.base * (
145
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
146
+ ) ** (self.dim / (self.dim - 2))
147
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
148
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
149
+
150
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
151
+
152
+ freqs = torch.outer(t, self.inv_freq)
153
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
154
+ emb = torch.cat((freqs, freqs), dim=-1)
155
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
156
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
157
+
158
+
159
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
160
+ def rotate_half(x):
161
+ """Rotates half the hidden dims of the input."""
162
+ x1 = x[..., : x.shape[-1] // 2]
163
+ x2 = x[..., x.shape[-1] // 2:]
164
+ return torch.cat((-x2, x1), dim=-1)
165
+
166
+
167
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
168
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
169
+ """Applies Rotary Position Embedding to the query and key tensors.
170
+ Args:
171
+ q (`torch.Tensor`): The query tensor.
172
+ k (`torch.Tensor`): The key tensor.
173
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
174
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
175
+ position_ids (`torch.Tensor`):
176
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
177
+ used to pass offsetted position ids when working with a KV-cache.
178
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
179
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
180
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
181
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
182
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
183
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
184
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
185
+ Returns:
186
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
187
+ """
188
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
189
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
190
+ q_embed = (q * cos) + (rotate_half(q) * sin)
191
+ k_embed = (k * cos) + (rotate_half(k) * sin)
192
+ return q_embed, k_embed
193
+
194
+
195
+ # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Phi
196
+ class PhiMLP(nn.Module):
197
+ def __init__(self, config):
198
+ super().__init__()
199
+ self.config = config
200
+ self.activation_fn = ACT2FN[config.hidden_act]
201
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
202
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
203
+
204
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
205
+ hidden_states = self.fc1(hidden_states)
206
+ hidden_states = self.activation_fn(hidden_states)
207
+ hidden_states = self.fc2(hidden_states)
208
+ return hidden_states
209
+
210
+
211
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
212
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
213
+ """
214
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
215
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
216
+ """
217
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
218
+ if n_rep == 1:
219
+ return hidden_states
220
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
221
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
222
+
223
+
224
+ class PhiAttention(nn.Module):
225
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
226
+
227
+ def __init__(self, config: CheXagentConfig, layer_idx: Optional[int] = None):
228
+ super().__init__()
229
+ self.config = config
230
+ self.layer_idx = layer_idx
231
+ if layer_idx is None:
232
+ logger.warning_once(
233
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
234
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
235
+ "when creating this class."
236
+ )
237
+
238
+ self.attention_dropout = config.attention_dropout
239
+ self.hidden_size = config.hidden_size
240
+ self.num_heads = config.num_attention_heads
241
+ self.head_dim = self.hidden_size // self.num_heads
242
+ self.num_key_value_heads = config.num_key_value_heads
243
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
244
+ self.max_position_embeddings = config.max_position_embeddings
245
+ self.rope_theta = config.rope_theta
246
+ self.partial_rotary_factor = config.partial_rotary_factor
247
+ self.is_causal = True
248
+
249
+ if (self.head_dim * self.num_heads) != self.hidden_size:
250
+ raise ValueError(
251
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
252
+ f" and `num_heads`: {self.num_heads})."
253
+ )
254
+
255
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
256
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
257
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
258
+ self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=True)
259
+
260
+ self.qk_layernorm = config.qk_layernorm
261
+ if self.qk_layernorm:
262
+ self.q_layernorm = nn.LayerNorm(
263
+ config.hidden_size // self.num_heads, eps=config.layer_norm_eps, elementwise_affine=True
264
+ )
265
+ self.k_layernorm = nn.LayerNorm(
266
+ config.hidden_size // self.num_heads, eps=config.layer_norm_eps, elementwise_affine=True
267
+ )
268
+
269
+ self._init_rope()
270
+
271
+ def _init_rope(self):
272
+ if self.config.rope_scaling is None:
273
+ self.rotary_emb = PhiRotaryEmbedding(
274
+ int(self.partial_rotary_factor * self.head_dim),
275
+ max_position_embeddings=self.max_position_embeddings,
276
+ base=self.rope_theta,
277
+ )
278
+ else:
279
+ scaling_type = self.config.rope_scaling["type"]
280
+ scaling_factor = self.config.rope_scaling["factor"]
281
+ if scaling_type == "linear":
282
+ self.rotary_emb = PhiLinearScalingRotaryEmbedding(
283
+ int(self.partial_rotary_factor * self.head_dim),
284
+ max_position_embeddings=self.max_position_embeddings,
285
+ scaling_factor=scaling_factor,
286
+ base=self.rope_theta,
287
+ )
288
+ elif scaling_type == "dynamic":
289
+ self.rotary_emb = PhiDynamicNTKScalingRotaryEmbedding(
290
+ int(self.partial_rotary_factor * self.head_dim),
291
+ max_position_embeddings=self.max_position_embeddings,
292
+ scaling_factor=scaling_factor,
293
+ base=self.rope_theta,
294
+ )
295
+ else:
296
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
297
+
298
+ # Phi-2 has an attention overflow issue (with FP16) and requires autocast to be disabled
299
+ @torch.autocast("cpu", enabled=False)
300
+ @torch.autocast("cuda", enabled=False)
301
+ def forward(
302
+ self,
303
+ hidden_states: torch.Tensor,
304
+ attention_mask: Optional[torch.Tensor] = None,
305
+ position_ids: Optional[torch.LongTensor] = None,
306
+ past_key_value: Optional[Cache] = None,
307
+ output_attentions: bool = False,
308
+ use_cache: bool = False,
309
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
310
+ bsz, q_len, _ = hidden_states.size()
311
+
312
+ query_states = self.q_proj(hidden_states)
313
+ key_states = self.k_proj(hidden_states)
314
+ value_states = self.v_proj(hidden_states)
315
+
316
+ if self.qk_layernorm:
317
+ query_states = self.q_layernorm(query_states)
318
+ key_states = self.k_layernorm(key_states)
319
+
320
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
321
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
322
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
323
+
324
+ kv_seq_len = key_states.shape[-2]
325
+ if past_key_value is not None:
326
+ if self.layer_idx is None:
327
+ raise ValueError(
328
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
329
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
330
+ "with a layer index."
331
+ )
332
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
333
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
334
+
335
+ # Partial rotary embedding
336
+ query_rot, query_pass = (
337
+ query_states[..., : self.rotary_emb.dim],
338
+ query_states[..., self.rotary_emb.dim:],
339
+ )
340
+ key_rot, key_pass = (
341
+ key_states[..., : self.rotary_emb.dim],
342
+ key_states[..., self.rotary_emb.dim:],
343
+ )
344
+ # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
345
+ query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
346
+
347
+ # [batch_size, seq_length, num_heads, head_dim]
348
+ query_states = torch.cat((query_rot, query_pass), dim=-1)
349
+ key_states = torch.cat((key_rot, key_pass), dim=-1)
350
+
351
+ if past_key_value is not None:
352
+ cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
353
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
354
+
355
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
356
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
357
+
358
+ # Queries and keys upcast to fp32 is required by Phi-2 to avoid overflow
359
+ attn_weights = torch.matmul(
360
+ query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3)
361
+ ) / math.sqrt(self.head_dim)
362
+
363
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
364
+ raise ValueError(
365
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
366
+ f" {attn_weights.size()}"
367
+ )
368
+
369
+ if attention_mask is not None:
370
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
371
+ raise ValueError(
372
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
373
+ )
374
+ attn_weights = attn_weights + attention_mask
375
+
376
+ # upcast attention to fp32
377
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
378
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
379
+
380
+ attn_output = torch.matmul(attn_weights, value_states)
381
+
382
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
383
+ raise ValueError(
384
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
385
+ f" {attn_output.size()}"
386
+ )
387
+
388
+ attn_output = attn_output.transpose(1, 2).contiguous()
389
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
390
+
391
+ attn_output = self.dense(attn_output)
392
+
393
+ if not output_attentions:
394
+ attn_weights = None
395
+
396
+ return attn_output, attn_weights, past_key_value
397
+
398
+
399
+ class PhiFlashAttention2(PhiAttention):
400
+ """
401
+ Phi flash attention module. This module inherits from `PhiAttention` as the weights of the module stays
402
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
403
+ flash attention and deal with padding tokens in case the input contains any of them.
404
+ """
405
+
406
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
407
+ def __init__(self, *args, **kwargs):
408
+ super().__init__(*args, **kwargs)
409
+
410
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
411
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
412
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
413
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
414
+
415
+ def forward(
416
+ self,
417
+ hidden_states: torch.Tensor,
418
+ attention_mask: Optional[torch.LongTensor] = None,
419
+ position_ids: Optional[torch.LongTensor] = None,
420
+ past_key_value: Optional[Cache] = None,
421
+ output_attentions: bool = False,
422
+ use_cache: bool = False,
423
+ **kwargs,
424
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
425
+ # PhiFlashAttention2 attention does not support output_attentions
426
+
427
+ output_attentions = False
428
+
429
+ bsz, q_len, _ = hidden_states.size()
430
+
431
+ query_states = self.q_proj(hidden_states)
432
+ key_states = self.k_proj(hidden_states)
433
+ value_states = self.v_proj(hidden_states)
434
+
435
+ if self.qk_layernorm:
436
+ query_states = self.q_layernorm(query_states)
437
+ key_states = self.k_layernorm(key_states)
438
+
439
+ # Flash attention requires the input to have the shape
440
+ # batch_size x seq_length x head_dim x hidden_dim
441
+ # therefore we just need to keep the original shape
442
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
443
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
444
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
445
+
446
+ kv_seq_len = key_states.shape[-2]
447
+ if past_key_value is not None:
448
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
449
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
450
+
451
+ # Partial rotary embedding
452
+ query_rot, query_pass = (
453
+ query_states[..., : self.rotary_emb.dim],
454
+ query_states[..., self.rotary_emb.dim:],
455
+ )
456
+ key_rot, key_pass = (
457
+ key_states[..., : self.rotary_emb.dim],
458
+ key_states[..., self.rotary_emb.dim:],
459
+ )
460
+ # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
461
+ query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
462
+
463
+ # [batch_size, seq_length, num_heads, head_dim]
464
+ query_states = torch.cat((query_rot, query_pass), dim=-1)
465
+ key_states = torch.cat((key_rot, key_pass), dim=-1)
466
+
467
+ if past_key_value is not None:
468
+ cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
469
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
470
+
471
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
472
+ # to be able to avoid many of these transpose/reshape/view.
473
+ query_states = query_states.transpose(1, 2)
474
+ key_states = key_states.transpose(1, 2)
475
+ value_states = value_states.transpose(1, 2)
476
+
477
+ attn_dropout = self.attention_dropout if self.training else 0.0
478
+
479
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
480
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
481
+ # cast them back in the correct dtype just to be sure everything works as expected.
482
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
483
+ # in fp32.
484
+
485
+ if query_states.dtype == torch.float32:
486
+ if torch.is_autocast_enabled():
487
+ target_dtype = torch.get_autocast_gpu_dtype()
488
+ # Handle the case where the model is quantized
489
+ elif hasattr(self.config, "_pre_quantization_dtype"):
490
+ target_dtype = self.config._pre_quantization_dtype
491
+ else:
492
+ target_dtype = self.q_proj.weight.dtype
493
+
494
+ logger.warning_once(
495
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
496
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
497
+ f" {target_dtype}."
498
+ )
499
+
500
+ query_states = query_states.to(target_dtype)
501
+ key_states = key_states.to(target_dtype)
502
+ value_states = value_states.to(target_dtype)
503
+
504
+ attn_output = self._flash_attention_forward(
505
+ query_states, key_states, value_states, attention_mask, q_len, dropout=attn_dropout, softmax_scale=None
506
+ )
507
+
508
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
509
+ attn_output = self.dense(attn_output)
510
+
511
+ if not output_attentions:
512
+ attn_weights = None
513
+
514
+ return attn_output, attn_weights, past_key_value
515
+
516
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
517
+ def _flash_attention_forward(
518
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
519
+ ):
520
+ """
521
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
522
+ first unpad the input, then computes the attention scores and pad the final attention scores.
523
+ Args:
524
+ query_states (`torch.Tensor`):
525
+ Input query states to be passed to Flash Attention API
526
+ key_states (`torch.Tensor`):
527
+ Input key states to be passed to Flash Attention API
528
+ value_states (`torch.Tensor`):
529
+ Input value states to be passed to Flash Attention API
530
+ attention_mask (`torch.Tensor`):
531
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
532
+ position of padding tokens and 1 for the position of non-padding tokens.
533
+ dropout (`int`, *optional*):
534
+ Attention dropout
535
+ softmax_scale (`float`, *optional*):
536
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
537
+ """
538
+ if not self._flash_attn_uses_top_left_mask:
539
+ causal = self.is_causal
540
+ else:
541
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
542
+ causal = self.is_causal and query_length != 1
543
+
544
+ # Contains at least one padding token in the sequence
545
+ if attention_mask is not None:
546
+ batch_size = query_states.shape[0]
547
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
548
+ query_states, key_states, value_states, attention_mask, query_length
549
+ )
550
+
551
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
552
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
553
+
554
+ attn_output_unpad = flash_attn_varlen_func(
555
+ query_states,
556
+ key_states,
557
+ value_states,
558
+ cu_seqlens_q=cu_seqlens_q,
559
+ cu_seqlens_k=cu_seqlens_k,
560
+ max_seqlen_q=max_seqlen_in_batch_q,
561
+ max_seqlen_k=max_seqlen_in_batch_k,
562
+ dropout_p=dropout,
563
+ softmax_scale=softmax_scale,
564
+ causal=causal,
565
+ )
566
+
567
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
568
+ else:
569
+ attn_output = flash_attn_func(
570
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
571
+ )
572
+
573
+ return attn_output
574
+
575
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
576
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
577
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
578
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
579
+
580
+ key_layer = index_first_axis(
581
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
582
+ )
583
+ value_layer = index_first_axis(
584
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
585
+ )
586
+ if query_length == kv_seq_len:
587
+ query_layer = index_first_axis(
588
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
589
+ )
590
+ cu_seqlens_q = cu_seqlens_k
591
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
592
+ indices_q = indices_k
593
+ elif query_length == 1:
594
+ max_seqlen_in_batch_q = 1
595
+ cu_seqlens_q = torch.arange(
596
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
597
+ ) # There is a memcpy here, that is very bad.
598
+ indices_q = cu_seqlens_q[:-1]
599
+ query_layer = query_layer.squeeze(1)
600
+ else:
601
+ # The -q_len: slice assumes left padding.
602
+ attention_mask = attention_mask[:, -query_length:]
603
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
604
+
605
+ return (
606
+ query_layer,
607
+ key_layer,
608
+ value_layer,
609
+ indices_q,
610
+ (cu_seqlens_q, cu_seqlens_k),
611
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
612
+ )
613
+
614
+
615
+ PHI_ATTENTION_CLASSES = {
616
+ "eager": PhiAttention,
617
+ "flash_attention_2": PhiFlashAttention2,
618
+ }
619
+
620
+
621
+ class PhiDecoderLayer(nn.Module):
622
+ def __init__(self, config: CheXagentConfig, layer_idx: int):
623
+ super().__init__()
624
+ self.self_attn = PHI_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
625
+ self.mlp = PhiMLP(config)
626
+ self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
627
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
628
+
629
+ def forward(
630
+ self,
631
+ hidden_states: torch.Tensor,
632
+ attention_mask: Optional[torch.Tensor] = None,
633
+ position_ids: Optional[torch.LongTensor] = None,
634
+ output_attentions: Optional[bool] = False,
635
+ use_cache: Optional[bool] = False,
636
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
637
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
638
+ """
639
+ Args:
640
+ hidden_states (`torch.FloatTensor`):
641
+ input to the layer of shape `(batch, seq_len, embed_dim)`
642
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
643
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
644
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
645
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
646
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
647
+ output_attentions (`bool`, *optional*):
648
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
649
+ returned tensors for more detail.
650
+ use_cache (`bool`, *optional*):
651
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
652
+ (see `past_key_values`).
653
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
654
+ """
655
+
656
+ residual = hidden_states
657
+
658
+ hidden_states = self.input_layernorm(hidden_states)
659
+
660
+ # Self Attention
661
+ attn_outputs, self_attn_weights, present_key_value = self.self_attn(
662
+ hidden_states=hidden_states,
663
+ attention_mask=attention_mask,
664
+ position_ids=position_ids,
665
+ past_key_value=past_key_value,
666
+ output_attentions=output_attentions,
667
+ use_cache=use_cache,
668
+ )
669
+ attn_outputs = self.resid_dropout(attn_outputs)
670
+
671
+ feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
672
+ hidden_states = attn_outputs + feed_forward_hidden_states + residual
673
+ outputs = (hidden_states,)
674
+
675
+ if output_attentions:
676
+ outputs += (self_attn_weights,)
677
+
678
+ if use_cache:
679
+ outputs += (present_key_value,)
680
+
681
+ return outputs
682
+
683
+
684
+ PHI_START_DOCSTRING = r"""
685
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
686
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
687
+ etc.)
688
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
689
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
690
+ and behavior.
691
+ Parameters:
692
+ config ([`CheXagentConfig`]):
693
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
694
+ load the weights associated with the model, only the configuration. Check out the
695
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
696
+ """
697
+
698
+
699
+ @add_start_docstrings(
700
+ "The bare Phi Model outputting raw hidden-states without any specific head on top.",
701
+ PHI_START_DOCSTRING,
702
+ )
703
+ class PhiPreTrainedModel(PreTrainedModel):
704
+ config_class = CheXagentConfig
705
+ base_model_prefix = "model"
706
+ supports_gradient_checkpointing = True
707
+ _no_split_modules = ["PhiDecoderLayer"]
708
+ _skip_keys_device_placement = "past_key_values"
709
+ _supports_flash_attn_2 = True
710
+ _supports_cache_class = True
711
+
712
+ def _init_weights(self, module):
713
+ std = self.config.initializer_range
714
+ if isinstance(module, nn.Linear):
715
+ module.weight.data.normal_(mean=0.0, std=std)
716
+ if module.bias is not None:
717
+ module.bias.data.zero_()
718
+ elif isinstance(module, nn.Embedding):
719
+ module.weight.data.normal_(mean=0.0, std=std)
720
+ if module.padding_idx is not None:
721
+ module.weight.data[module.padding_idx].zero_()
722
+
723
+
724
+ PHI_INPUTS_DOCSTRING = r"""
725
+ Args:
726
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
727
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
728
+ it.
729
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
730
+ [`PreTrainedTokenizer.__call__`] for details.
731
+ [What are input IDs?](../glossary#input-ids)
732
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
733
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
734
+ - 1 for tokens that are **not masked**,
735
+ - 0 for tokens that are **masked**.
736
+ [What are attention masks?](../glossary#attention-mask)
737
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
738
+ [`PreTrainedTokenizer.__call__`] for details.
739
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
740
+ `past_key_values`).
741
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
742
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
743
+ information on the default strategy.
744
+ - 1 indicates the head is **not masked**,
745
+ - 0 indicates the head is **masked**.
746
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
747
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
748
+ config.n_positions - 1]`.
749
+ [What are position IDs?](../glossary#position-ids)
750
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
751
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
752
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
753
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
754
+ Two formats are allowed:
755
+ - a [`~cache_utils.Cache`] instance;
756
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
757
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
758
+ cache format.
759
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
760
+ legacy cache format will be returned.
761
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
762
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
763
+ of shape `(batch_size, sequence_length)`.
764
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
765
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
766
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
767
+ model's internal embedding lookup matrix.
768
+ use_cache (`bool`, *optional*):
769
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
770
+ `past_key_values`).
771
+ output_attentions (`bool`, *optional*):
772
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
773
+ tensors for more detail.
774
+ output_hidden_states (`bool`, *optional*):
775
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
776
+ more detail.
777
+ return_dict (`bool`, *optional*):
778
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
779
+ """
780
+
781
+
782
+ class CheXagentModel(PhiPreTrainedModel):
783
+ """
784
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiDecoderLayer`]
785
+ Args:
786
+ config: CheXagentConfig
787
+ """
788
+
789
+ def __init__(self, config: CheXagentConfig):
790
+ super().__init__(config)
791
+ self.padding_idx = config.pad_token_id
792
+ self.vocab_size = config.vocab_size
793
+
794
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
795
+ self.embed_dropout = nn.Dropout(config.embd_pdrop)
796
+ self.layers = nn.ModuleList(
797
+ [PhiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
798
+ )
799
+ self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
800
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
801
+
802
+ self.gradient_checkpointing = False
803
+
804
+ # Initialize weights and apply final processing
805
+ self.post_init()
806
+
807
+ # IMAGE
808
+ self.tokenizer = CheXagentTokenizer.from_pretrained(config.name_or_path)
809
+ # self.visual = VisionEnsembleModel(**config.visual)
810
+ self.visual = CLIPModel(**config.visual)
811
+ # self.visual = DINOv2Model(**config.visual)
812
+
813
+ def get_input_embeddings(self):
814
+ return self.embed_tokens
815
+
816
+ def set_input_embeddings(self, value):
817
+ self.embed_tokens = value
818
+
819
+ @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
820
+ def forward(
821
+ self,
822
+ input_ids: torch.LongTensor = None,
823
+ attention_mask: Optional[torch.Tensor] = None,
824
+ position_ids: Optional[torch.LongTensor] = None,
825
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
826
+ inputs_embeds: Optional[torch.FloatTensor] = None,
827
+ use_cache: Optional[bool] = None,
828
+ output_attentions: Optional[bool] = None,
829
+ output_hidden_states: Optional[bool] = None,
830
+ return_dict: Optional[bool] = None,
831
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
832
+ # IMAGE: encode images
833
+ if past_key_values is None and torch.any(input_ids == self.tokenizer.img_start_id):
834
+ bos_pos = torch.where(input_ids == self.tokenizer.img_start_id)
835
+ eos_pos = torch.where(input_ids == self.tokenizer.img_end_id)
836
+ assert (bos_pos[0] == eos_pos[0]).all()
837
+ img_pos = torch.stack((bos_pos[0], bos_pos[1], eos_pos[1]), dim=1)
838
+ image_paths = []
839
+ for i, a, b in img_pos:
840
+ image = input_ids[i][a + 1: b - 1].tolist()
841
+ image = image[: image.index(self.tokenizer.img_pad_id)]
842
+ image_paths.append(self.tokenizer.decode(image))
843
+ images = self.visual.encode(image_paths, training=self.training)
844
+ assert images.shape[0] == len(images)
845
+ fake_images = None
846
+ elif self.training:
847
+ fake_images = torch.zeros(1, 3, 512, 512).to(
848
+ dtype=next(self.visual.parameters()).dtype, device=next(self.visual.parameters()).device)
849
+ images = self.visual(fake_images)
850
+ else:
851
+ fake_images = None
852
+ images = None
853
+
854
+ # set constants
855
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
856
+ output_hidden_states = (
857
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
858
+ )
859
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
860
+
861
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
862
+
863
+ # IMAGE: retrieve input_ids and inputs_embeds
864
+ if input_ids is not None and inputs_embeds is not None:
865
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
866
+ elif input_ids is not None:
867
+ input_shape = input_ids.size()
868
+ batch_size, seq_length = input_ids.shape[:2]
869
+ elif inputs_embeds is not None:
870
+ input_shape = inputs_embeds.size()[:-1]
871
+ batch_size, seq_length = inputs_embeds.shape[:2]
872
+ else:
873
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
874
+
875
+ past_key_values_length = 0
876
+
877
+ if self.gradient_checkpointing and self.training:
878
+ if use_cache:
879
+ logger.warning_once(
880
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
881
+ )
882
+ use_cache = False
883
+
884
+ if use_cache:
885
+ use_legacy_cache = not isinstance(past_key_values, Cache)
886
+ if use_legacy_cache:
887
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
888
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
889
+
890
+ if position_ids is None:
891
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
892
+ position_ids = torch.arange(
893
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
894
+ )
895
+ position_ids = position_ids.unsqueeze(0)
896
+
897
+ if inputs_embeds is None:
898
+ inputs_embeds = self.embed_tokens(input_ids)
899
+
900
+ inputs_embeds = self.embed_dropout(inputs_embeds)
901
+
902
+ # Attention mask.
903
+ if self._use_flash_attention_2:
904
+ # 2d mask is passed through the layers
905
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
906
+ else:
907
+ # 4d mask is passed through the layers
908
+ attention_mask = _prepare_4d_causal_attention_mask(
909
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
910
+ )
911
+
912
+ # IMAGE: embed positions
913
+ hidden_states = inputs_embeds.clone()
914
+ if fake_images is not None:
915
+ hidden_states = hidden_states + images.mean() * 0
916
+ elif images is not None:
917
+ for idx, (i, a, b) in enumerate(img_pos):
918
+ hidden_states[i][a + 1: b] = images[idx]
919
+ output_shape = input_shape + (hidden_states.size(-1),)
920
+
921
+ # decoder layers
922
+ all_hidden_states = () if output_hidden_states else None
923
+ all_self_attns = () if output_attentions else None
924
+ next_decoder_cache = None
925
+
926
+ for decoder_layer in self.layers:
927
+ if output_hidden_states:
928
+ all_hidden_states += (hidden_states,)
929
+
930
+ if self.gradient_checkpointing and self.training:
931
+ layer_outputs = self._gradient_checkpointing_func(
932
+ decoder_layer.__call__,
933
+ hidden_states,
934
+ attention_mask,
935
+ position_ids,
936
+ past_key_values,
937
+ output_attentions,
938
+ )
939
+ else:
940
+ layer_outputs = decoder_layer(
941
+ hidden_states,
942
+ attention_mask=attention_mask,
943
+ position_ids=position_ids,
944
+ past_key_value=past_key_values,
945
+ output_attentions=output_attentions,
946
+ use_cache=use_cache,
947
+ )
948
+
949
+ hidden_states = layer_outputs[0]
950
+
951
+ if use_cache:
952
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
953
+
954
+ if output_attentions:
955
+ all_self_attns += (layer_outputs[1],)
956
+
957
+ hidden_states = self.final_layernorm(hidden_states)
958
+
959
+ # add hidden states from the last decoder layer
960
+ if output_hidden_states:
961
+ all_hidden_states += (hidden_states,)
962
+
963
+ next_cache = None
964
+ if use_cache:
965
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
966
+ if not return_dict:
967
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
968
+ return BaseModelOutputWithPast(
969
+ last_hidden_state=hidden_states,
970
+ past_key_values=next_cache,
971
+ hidden_states=all_hidden_states,
972
+ attentions=all_self_attns,
973
+ )
974
+
975
+
976
+ class CheXagentForCausalLM(PhiPreTrainedModel):
977
+ _tied_weights_keys = ["lm_head.weight"]
978
+
979
+ def __init__(self, config):
980
+ super().__init__(config)
981
+ self.model = CheXagentModel(config)
982
+ self.vocab_size = config.vocab_size
983
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
984
+
985
+ # Initialize weights and apply final processing
986
+ self.post_init()
987
+
988
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
989
+ def get_input_embeddings(self):
990
+ return self.model.embed_tokens
991
+
992
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
993
+ def set_input_embeddings(self, value):
994
+ self.model.embed_tokens = value
995
+
996
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
997
+ def get_output_embeddings(self):
998
+ return self.lm_head
999
+
1000
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
1001
+ def set_output_embeddings(self, new_embeddings):
1002
+ self.lm_head = new_embeddings
1003
+
1004
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
1005
+ def set_decoder(self, decoder):
1006
+ self.model = decoder
1007
+
1008
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
1009
+ def get_decoder(self):
1010
+ return self.model
1011
+
1012
+ def forward(
1013
+ self,
1014
+ input_ids: torch.LongTensor = None,
1015
+ attention_mask: Optional[torch.Tensor] = None,
1016
+ position_ids: Optional[torch.LongTensor] = None,
1017
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1018
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1019
+ labels: Optional[torch.LongTensor] = None,
1020
+ use_cache: Optional[bool] = None,
1021
+ output_attentions: Optional[bool] = None,
1022
+ output_hidden_states: Optional[bool] = None,
1023
+ return_dict: Optional[bool] = None,
1024
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1025
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1026
+ output_hidden_states = (
1027
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1028
+ )
1029
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1030
+
1031
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1032
+ outputs = self.model(
1033
+ input_ids=input_ids,
1034
+ attention_mask=attention_mask,
1035
+ position_ids=position_ids,
1036
+ past_key_values=past_key_values,
1037
+ inputs_embeds=inputs_embeds,
1038
+ use_cache=use_cache,
1039
+ output_attentions=output_attentions,
1040
+ output_hidden_states=output_hidden_states,
1041
+ return_dict=return_dict,
1042
+ )
1043
+
1044
+ hidden_states = outputs[0]
1045
+ logits = self.lm_head(hidden_states)
1046
+ logits = logits.float()
1047
+
1048
+ loss = None
1049
+ if labels is not None:
1050
+ # Shift so that tokens < n predict n
1051
+ shift_logits = logits[..., :-1, :].contiguous()
1052
+ shift_labels = labels[..., 1:].contiguous()
1053
+ # Flatten the tokens
1054
+ loss_fct = CrossEntropyLoss()
1055
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1056
+ shift_labels = shift_labels.view(-1)
1057
+ # Enable model parallelism
1058
+ shift_labels = shift_labels.to(shift_logits.device)
1059
+ loss = loss_fct(shift_logits, shift_labels)
1060
+
1061
+ if not return_dict:
1062
+ output = (logits,) + outputs[1:]
1063
+ return (loss,) + output if loss is not None else output
1064
+
1065
+ return CausalLMOutputWithPast(
1066
+ loss=loss,
1067
+ logits=logits,
1068
+ past_key_values=outputs.past_key_values,
1069
+ hidden_states=outputs.hidden_states,
1070
+ attentions=outputs.attentions,
1071
+ )
1072
+
1073
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
1074
+ def prepare_inputs_for_generation(
1075
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1076
+ ):
1077
+ if past_key_values is not None:
1078
+ if isinstance(past_key_values, Cache):
1079
+ cache_length = past_key_values.get_seq_length()
1080
+ past_length = past_key_values.seen_tokens
1081
+ max_cache_length = past_key_values.get_max_length()
1082
+ else:
1083
+ cache_length = past_length = past_key_values[0][0].shape[2]
1084
+ max_cache_length = None
1085
+
1086
+ # Keep only the unprocessed tokens:
1087
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1088
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1089
+ # input)
1090
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1091
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
1092
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1093
+ # input_ids based on the past_length.
1094
+ elif past_length < input_ids.shape[1]:
1095
+ input_ids = input_ids[:, past_length:]
1096
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1097
+
1098
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1099
+ if (
1100
+ max_cache_length is not None
1101
+ and attention_mask is not None
1102
+ and cache_length + input_ids.shape[1] > max_cache_length
1103
+ ):
1104
+ attention_mask = attention_mask[:, -max_cache_length:]
1105
+
1106
+ position_ids = kwargs.get("position_ids", None)
1107
+ if attention_mask is not None and position_ids is None:
1108
+ # create position_ids on the fly for batch generation
1109
+ position_ids = attention_mask.long().cumsum(-1) - 1
1110
+ position_ids.masked_fill_(attention_mask == 0, 1)
1111
+ if past_key_values:
1112
+ position_ids = position_ids[:, -input_ids.shape[1]:]
1113
+
1114
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1115
+ if inputs_embeds is not None and past_key_values is None:
1116
+ model_inputs = {"inputs_embeds": inputs_embeds}
1117
+ else:
1118
+ model_inputs = {"input_ids": input_ids}
1119
+
1120
+ model_inputs.update(
1121
+ {
1122
+ "position_ids": position_ids,
1123
+ "past_key_values": past_key_values,
1124
+ "use_cache": kwargs.get("use_cache"),
1125
+ "attention_mask": attention_mask,
1126
+ }
1127
+ )
1128
+ return model_inputs
1129
+
1130
+ @staticmethod
1131
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1132
+ def _reorder_cache(past_key_values, beam_idx):
1133
+ reordered_past = ()
1134
+ for layer_past in past_key_values:
1135
+ reordered_past += (
1136
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1137
+ )
1138
+ return reordered_past
modeling_visual.py ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import math
3
+ import re
4
+ from functools import partial
5
+ from typing import List
6
+
7
+ import albumentations as A
8
+ import cv2
9
+ import numpy as np
10
+ import pyarrow as pa
11
+ import requests
12
+ import torch
13
+ from PIL import Image
14
+ from albumentations.pytorch import ToTensorV2
15
+ from einops import rearrange
16
+ from torch import nn
17
+ from torch.nn import functional as F
18
+ from torch.nn.init import trunc_normal_
19
+ from torchvision import transforms
20
+ from torchvision.transforms import InterpolationMode
21
+ from transformers import AutoModel, AutoProcessor
22
+ from transformers.activations import ACT2FN
23
+
24
+
25
+ class TransformCXR(object):
26
+ def __init__(
27
+ self,
28
+ image_size=448,
29
+ mean=(0.48145466, 0.4578275, 0.40821073),
30
+ std=(0.26862954, 0.26130258, 0.27577711),
31
+ allow_shift=True,
32
+ training=True,
33
+ normalize=True
34
+ ):
35
+
36
+ resize_size = image_size
37
+ p_train = 0.5
38
+ shift_limit = (-0.0, 0.0)
39
+ scale_limit = (-0.1, -0.02)
40
+ rotate_limit = 5
41
+ scale = (0.00, 0.01)
42
+ brightness_limit = (-0.15, 0.15)
43
+ contrast_limit = (-0.05, 0.05)
44
+ pad_mode = cv2.BORDER_CONSTANT
45
+ pad_val = (0, 0, 0)
46
+
47
+ if training:
48
+ if allow_shift:
49
+ transform_list = [
50
+ A.ShiftScaleRotate(
51
+ shift_limit=shift_limit, scale_limit=scale_limit,
52
+ rotate_limit=rotate_limit, border_mode=pad_mode, value=pad_val,
53
+ p=p_train
54
+ ),
55
+ A.Perspective(
56
+ scale=scale, pad_mode=pad_mode, pad_val=pad_val, p=p_train
57
+ ),
58
+ A.Resize(height=resize_size, width=resize_size, interpolation=cv2.INTER_CUBIC),
59
+ A.RandomCrop(height=image_size, width=image_size),
60
+ A.RandomBrightnessContrast(
61
+ brightness_limit=brightness_limit, contrast_limit=contrast_limit,
62
+ p=p_train
63
+ )
64
+ ]
65
+ else:
66
+ transform_list = [
67
+ A.Resize(height=image_size, width=image_size, interpolation=cv2.INTER_CUBIC),
68
+ A.RandomBrightnessContrast(
69
+ brightness_limit=brightness_limit, contrast_limit=contrast_limit,
70
+ p=p_train
71
+ )
72
+ ]
73
+ else:
74
+ transform_list = [
75
+ A.Resize(height=image_size, width=image_size, interpolation=cv2.INTER_CUBIC)
76
+ ]
77
+
78
+ if normalize:
79
+ transform_list += [A.Normalize(mean=mean, std=std), ToTensorV2(transpose_mask=True)]
80
+
81
+ self.transforms = A.Compose(transform_list)
82
+
83
+ def __call__(self, image):
84
+ image = np.array(image)
85
+ return self.transforms(image=image)['image']
86
+
87
+
88
+ def get_abs_pos(abs_pos, tgt_size):
89
+ # abs_pos: L, C
90
+ # tgt_size: M
91
+ # return: M, C
92
+ src_size = int(math.sqrt(abs_pos.size(0)))
93
+ tgt_size = int(math.sqrt(tgt_size))
94
+ dtype = abs_pos.dtype
95
+
96
+ if src_size != tgt_size:
97
+ return F.interpolate(
98
+ abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
99
+ size=(tgt_size, tgt_size),
100
+ mode="bicubic",
101
+ align_corners=False,
102
+ ).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
103
+ else:
104
+ return abs_pos
105
+
106
+
107
+ def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
108
+ """
109
+ grid_size: int of the grid height and width
110
+ return:
111
+ pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
112
+ """
113
+ grid_h = np.arange(grid_size, dtype=np.float32)
114
+ grid_w = np.arange(grid_size, dtype=np.float32)
115
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
116
+ grid = np.stack(grid, axis=0)
117
+
118
+ grid = grid.reshape([2, 1, grid_size, grid_size])
119
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
120
+ if cls_token:
121
+ pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
122
+ return pos_embed
123
+
124
+
125
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
126
+ assert embed_dim % 2 == 0
127
+
128
+ # use half of dimensions to encode grid_h
129
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
130
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
131
+
132
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
133
+ return emb
134
+
135
+
136
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
137
+ """
138
+ embed_dim: output dimension for each position
139
+ pos: a list of positions to be encoded: size (M,)
140
+ out: (M, D)
141
+ """
142
+ assert embed_dim % 2 == 0
143
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
144
+ omega /= embed_dim / 2.
145
+ omega = 1. / 10000 ** omega # (D/2,)
146
+
147
+ pos = pos.reshape(-1) # (M,)
148
+ out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
149
+
150
+ emb_sin = np.sin(out) # (M, D/2)
151
+ emb_cos = np.cos(out) # (M, D/2)
152
+
153
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
154
+ return emb
155
+
156
+
157
+ class Resampler(nn.Module):
158
+ """
159
+ A 2D perceiver-resampler network with one cross attention layers by
160
+ (grid_size**2) learnable queries and 2d sincos pos_emb
161
+ Outputs:
162
+ A tensor with the shape of (grid_size**2, embed_dim)
163
+ """
164
+
165
+ def __init__(
166
+ self,
167
+ grid_size,
168
+ embed_dim,
169
+ num_heads,
170
+ kv_dim=None,
171
+ norm_layer=nn.LayerNorm
172
+ ):
173
+ super().__init__()
174
+ self.num_queries = grid_size ** 2
175
+ self.embed_dim = embed_dim
176
+ self.num_heads = num_heads
177
+
178
+ self.pos_embed = nn.Parameter(
179
+ torch.from_numpy(get_2d_sincos_pos_embed(embed_dim, grid_size)).float()
180
+ ).requires_grad_(False)
181
+
182
+ self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
183
+ # trunc_normal_(self.query, std=.02)
184
+
185
+ if kv_dim is not None and kv_dim != embed_dim:
186
+ self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
187
+ else:
188
+ self.kv_proj = nn.Identity()
189
+
190
+ self.attn = nn.MultiheadAttention(embed_dim, num_heads)
191
+ self.ln_q = norm_layer(embed_dim)
192
+ self.ln_kv = norm_layer(embed_dim)
193
+ # self.apply(self._init_weights)
194
+
195
+ def _init_weights(self, m):
196
+ if isinstance(m, nn.Linear):
197
+ trunc_normal_(m.weight, std=.02)
198
+ if isinstance(m, nn.Linear) and m.bias is not None:
199
+ nn.init.constant_(m.bias, 0)
200
+ elif isinstance(m, nn.LayerNorm):
201
+ nn.init.constant_(m.bias, 0)
202
+ nn.init.constant_(m.weight, 1.0)
203
+
204
+ def forward(self, x, attn_mask=None):
205
+
206
+ pos_embed = get_abs_pos(self.pos_embed, x.size(1))
207
+
208
+ x = self.kv_proj(x)
209
+ x = self.ln_kv(x).permute(1, 0, 2)
210
+
211
+ N = x.shape[1]
212
+ q = self.ln_q(self.query)
213
+ out = self.attn(
214
+ self._repeat(q, N) + self.pos_embed.unsqueeze(1),
215
+ x + pos_embed.unsqueeze(1),
216
+ x,
217
+ attn_mask=attn_mask
218
+ )[0]
219
+ return out.permute(1, 0, 2)
220
+
221
+ def _repeat(self, query, N: int):
222
+ return query.unsqueeze(1).repeat(1, N, 1)
223
+
224
+
225
+ class CLIPModel(nn.Module):
226
+
227
+ def __init__(
228
+ self,
229
+ image_size: int,
230
+ n_queries: int = 256,
231
+ output_dim: int = 512,
232
+ vision_model_name_or_path: str = "StanfordAIMI/XraySigLIP__vit-l-16-siglip-384__webli",
233
+ **kwargs
234
+ ):
235
+ super().__init__()
236
+ # load model and processor
237
+ self.model = AutoModel.from_pretrained(vision_model_name_or_path).vision_model
238
+ self.processor = AutoProcessor.from_pretrained(vision_model_name_or_path).image_processor
239
+
240
+ # set constants
241
+ self.image_height, self.image_width = self.image_size = (image_size, image_size)
242
+ width = self.model.config.hidden_size
243
+ patch_height, patch_width = self.model.embeddings.patch_embedding.kernel_size
244
+ self.grid_size = (self.image_height // patch_height, self.image_width // patch_width)
245
+ self.output_dim = output_dim
246
+
247
+ # Transforms
248
+ self.mean = self.processor.image_mean
249
+ self.std = self.processor.image_std
250
+ self.image_transform_train = TransformCXR(image_size=image_size, mean=self.mean, std=self.std, training=True)
251
+ self.image_transform_train_no_shift = TransformCXR(
252
+ image_size=image_size, mean=self.mean, std=self.std, allow_shift=False, training=True
253
+ )
254
+ self.image_transform_val = TransformCXR(image_size=image_size, mean=self.mean, std=self.std, training=False)
255
+ self.image_transform = transforms.Compose([
256
+ transforms.Resize(
257
+ (image_size, image_size),
258
+ interpolation=InterpolationMode.BICUBIC
259
+ ),
260
+ transforms.ToTensor(),
261
+ transforms.Normalize(mean=self.mean, std=self.std),
262
+ ])
263
+
264
+ # MLP
265
+ self.pos_embed = nn.Parameter(
266
+ torch.from_numpy(get_2d_sincos_pos_embed(width, self.grid_size[0])).float()
267
+ ).requires_grad_(False)
268
+ self.attn_pool = nn.Sequential(
269
+ nn.Linear(width, output_dim * 4, bias=True),
270
+ ACT2FN["gelu"],
271
+ nn.Linear(output_dim * 4, output_dim, bias=True)
272
+ )
273
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
274
+ self.ln_post = norm_layer(output_dim)
275
+ self.proj = nn.Parameter((output_dim ** -0.5) * torch.randn(output_dim, output_dim), requires_grad=True)
276
+
277
+ def forward_resampler(self, x):
278
+ pos_embed = get_abs_pos(self.pos_embed, x.size(1))
279
+ x = x + pos_embed.unsqueeze(0)
280
+ x = self.attn_pool(x)
281
+ x = self.ln_post(x)
282
+ x = x @ self.proj
283
+ return x
284
+
285
+ def forward(self, x: torch.Tensor):
286
+ # get feature
287
+ x = self.model(x, output_hidden_states=True).hidden_states[-1]
288
+
289
+ # resampler
290
+ x = self.forward_resampler(x)
291
+ return x
292
+
293
+ def load_image(self, image_path, training):
294
+ if image_path.startswith("http://") or image_path.startswith("https://"):
295
+ image = Image.open(requests.get(image_path, stream=True).raw)
296
+ else:
297
+ image = Image.open(image_path)
298
+
299
+ image = image.convert("RGB")
300
+
301
+ no_shift = any([keyword in image_path for keyword in ["vindr", "candid", "siim", "object-cxr", "ms-cxr"]])
302
+ try:
303
+ if training or self.training:
304
+ if no_shift:
305
+ image_tensor = self.image_transform_train_no_shift(image)
306
+ else:
307
+ image_tensor = self.image_transform_train(image)
308
+ else:
309
+ image_tensor = self.image_transform_val(image)
310
+ except:
311
+ image_tensor = self.image_transform(image)
312
+ return image_tensor
313
+
314
+ def encode(self, image_paths: List[str], training):
315
+ images = []
316
+ for image_path in image_paths:
317
+ image = self.load_image(image_path, training)
318
+ images.append(image)
319
+ images = torch.stack(images, dim=0)
320
+ images = images.to(dtype=next(self.parameters()).dtype, device=next(self.parameters()).device)
321
+ outputs = self.forward(images)
322
+ return outputs
tokenization_chexagent.py ADDED
@@ -0,0 +1,675 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from functools import lru_cache
3
+ from typing import TYPE_CHECKING
4
+
5
+ import regex as re
6
+ from transformers.tokenization_utils_base import TextInput
7
+ from transformers.utils import is_tf_available, is_torch_available, to_py_obj
8
+
9
+ if TYPE_CHECKING:
10
+ if is_torch_available():
11
+ import torch
12
+ if is_tf_available():
13
+ import tensorflow as tf
14
+
15
+ import os
16
+ import random
17
+ from typing import Dict, List, Tuple, Union, Any, Callable, Optional
18
+
19
+ import matplotlib as mpl
20
+ import matplotlib.colors as mcolors
21
+ import matplotlib.colors as mplc
22
+ import matplotlib.figure as mplfigure
23
+ import numpy as np
24
+ import requests
25
+ import torch
26
+ from PIL import Image
27
+ from matplotlib.backends.backend_agg import FigureCanvasAgg
28
+ from transformers import PreTrainedTokenizer, AddedToken
29
+ from transformers.utils import logging
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+ VOCAB_FILES_NAMES = {
34
+ "vocab_file": "vocab.json",
35
+ "merges_file": "merges.txt",
36
+ }
37
+
38
+ PRETRAINED_VOCAB_FILES_MAP = {
39
+ "vocab_file": {
40
+ "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json",
41
+ },
42
+ "merges_file": {
43
+ "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt",
44
+ },
45
+ }
46
+
47
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
48
+ "Salesforce/codegen-350M-mono": 2048,
49
+ }
50
+
51
+ IMG_TOKEN_SPAN = 1024
52
+
53
+ DEFAULT_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['from'] == 'human' %}\n{{ '<|user|>\n' + message['value'] + eos_token }}\n{% elif message['from'] == 'system' %}\n{{ '<|system|>\n' + message['value'] + eos_token }}\n{% elif message['from'] == 'gpt' %}\n{{ '<|assistant|>\n' + message['value'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
54
+
55
+
56
+ @lru_cache()
57
+ def bytes_to_unicode():
58
+ """
59
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
60
+ characters the bpe code barfs on.
61
+
62
+ The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
63
+ if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
64
+ decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
65
+ tables between utf-8 bytes and unicode strings.
66
+ """
67
+ bs = (
68
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(
69
+ range(ord("®"), ord("ÿ") + 1))
70
+ )
71
+ cs = bs[:]
72
+ n = 0
73
+ for b in range(2 ** 8):
74
+ if b not in bs:
75
+ bs.append(b)
76
+ cs.append(2 ** 8 + n)
77
+ n += 1
78
+ cs = [chr(n) for n in cs]
79
+ return dict(zip(bs, cs))
80
+
81
+
82
+ def get_pairs(word):
83
+ """
84
+ Return set of symbol pairs in a word.
85
+
86
+ Word is represented as tuple of symbols (symbols being variable-length strings).
87
+ """
88
+ pairs = set()
89
+ prev_char = word[0]
90
+ for char in word[1:]:
91
+ pairs.add((prev_char, char))
92
+ prev_char = char
93
+ return pairs
94
+
95
+
96
+ def _list_find(
97
+ input_list: List[Any],
98
+ candidates: Tuple[Any],
99
+ start: int = 0,
100
+ ):
101
+ for i in range(start, len(input_list)):
102
+ if input_list[i] in candidates:
103
+ return i
104
+ return -1
105
+
106
+
107
+ def _replace_closed_tag(
108
+ input_tokens: List[Any],
109
+ start_tags: Union[Any, Tuple[Any]],
110
+ end_tags: Union[Any, Tuple[Any]],
111
+ inclusive_replace_func: Callable,
112
+ exclusive_replace_func: Callable = lambda x: x,
113
+ ):
114
+ if isinstance(start_tags, (str, int)):
115
+ start_tags = (start_tags,)
116
+ if isinstance(end_tags, (str, int)):
117
+ end_tags = (end_tags,)
118
+ assert len(start_tags) == len(end_tags)
119
+
120
+ output_tokens = []
121
+ end = 0
122
+ while True:
123
+ start = _list_find(input_tokens, start_tags, end)
124
+ if start == -1:
125
+ break
126
+ output_tokens.extend(exclusive_replace_func(input_tokens[end: start]))
127
+ tag_idx = start_tags.index(input_tokens[start])
128
+ end = _list_find(input_tokens, (end_tags[tag_idx],), start)
129
+ if end == -1:
130
+ raise ValueError("Unclosed image token")
131
+ output_tokens.extend(inclusive_replace_func(input_tokens[start: end + 1]))
132
+ end += 1
133
+ output_tokens.extend(exclusive_replace_func(input_tokens[end:]))
134
+ return output_tokens
135
+
136
+
137
+ class CheXagentTokenizer(PreTrainedTokenizer):
138
+ vocab_files_names = VOCAB_FILES_NAMES
139
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
140
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
141
+ model_input_names = ["input_ids", "attention_mask"]
142
+
143
+ def __init__(
144
+ self,
145
+ vocab_file,
146
+ merges_file,
147
+ errors="replace",
148
+ unk_token="<|endoftext|>",
149
+ bos_token="<|endoftext|>",
150
+ eos_token="<|endoftext|>",
151
+ pad_token=None,
152
+ add_prefix_space=False,
153
+ add_bos_token=False,
154
+ image_start_tag='<|img|>',
155
+ image_end_tag='<|/img|>',
156
+ image_pad_tag='<|imgpad|>',
157
+ ref_start_tag='<|ref|>',
158
+ ref_end_tag='<|/ref|>',
159
+ box_start_tag='<|box|>',
160
+ box_end_tag='<|/box|>',
161
+ quad_start_tag='<|quad|>',
162
+ quad_end_tag='<|/quad|>',
163
+ **kwargs,
164
+ ):
165
+ bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
166
+ eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
167
+ unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
168
+ pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
169
+ self.add_bos_token = add_bos_token
170
+
171
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
172
+ self.encoder = json.load(vocab_handle)
173
+ self.decoder = {v: k for k, v in self.encoder.items()}
174
+ self.errors = errors # how to handle errors in decoding
175
+ self.byte_encoder = bytes_to_unicode()
176
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
177
+ with open(merges_file, encoding="utf-8") as merges_handle:
178
+ bpe_merges = merges_handle.read().split("\n")[1:-1]
179
+ bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
180
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
181
+ self.cache = {}
182
+ self.add_prefix_space = add_prefix_space
183
+
184
+ # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
185
+ self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
186
+ super().__init__(
187
+ errors=errors,
188
+ unk_token=unk_token,
189
+ bos_token=bos_token,
190
+ eos_token=eos_token,
191
+ pad_token=pad_token,
192
+ add_prefix_space=add_prefix_space,
193
+ add_bos_token=add_bos_token,
194
+ **kwargs,
195
+ )
196
+
197
+ self.image_start_tag = image_start_tag
198
+ self.image_end_tag = image_end_tag
199
+ self.image_pad_tag = image_pad_tag
200
+ self.ref_start_tag = ref_start_tag
201
+ self.ref_end_tag = ref_end_tag
202
+ self.box_start_tag = box_start_tag
203
+ self.box_end_tag = box_end_tag
204
+ self.quad_start_tag = quad_start_tag
205
+ self.quad_end_tag = quad_end_tag
206
+ self.IMAGE_ST = (
207
+ image_start_tag, image_end_tag, image_pad_tag,
208
+ ref_start_tag, ref_end_tag, box_start_tag, box_end_tag,
209
+ quad_start_tag, quad_end_tag,
210
+ )
211
+ for special_token in self.IMAGE_ST:
212
+ if special_token not in self.get_vocab():
213
+ self.add_special_tokens({"additional_special_tokens": [special_token]})
214
+ for coordinate in range(10):
215
+ if f"<{coordinate}>" not in self.get_vocab():
216
+ self.add_special_tokens({"additional_special_tokens": [f"<|coord_{coordinate}|>"]})
217
+ if len(self) % 64 != 0:
218
+ for extra in range(((len(self) // 64) + 1) * 64 - len(self)):
219
+ if f"<extra_{extra}>" not in self.get_vocab():
220
+ self.add_special_tokens({"additional_special_tokens": [f"<|extra_{extra}|>"]})
221
+ self.img_start_id = self.convert_tokens_to_ids(self.image_start_tag)
222
+ self.img_end_id = self.convert_tokens_to_ids(self.image_end_tag)
223
+ self.img_pad_id = self.convert_tokens_to_ids(self.image_pad_tag)
224
+ self.ref_start_id = self.convert_tokens_to_ids(self.ref_start_tag)
225
+ self.ref_end_id = self.convert_tokens_to_ids(self.ref_end_tag)
226
+ self.box_start_id = self.convert_tokens_to_ids(self.box_start_tag)
227
+ self.box_end_id = self.convert_tokens_to_ids(self.box_end_tag)
228
+ self.quad_start_id = self.convert_tokens_to_ids(self.quad_start_tag)
229
+ self.quad_end_id = self.convert_tokens_to_ids(self.quad_end_tag)
230
+ self.chat_template = DEFAULT_CHAT_TEMPLATE
231
+
232
+ @property
233
+ def vocab_size(self):
234
+ return len(self.encoder)
235
+
236
+ def get_vocab(self):
237
+ return dict(self.encoder, **self.added_tokens_encoder)
238
+
239
+ def bpe(self, token):
240
+ if token in self.cache:
241
+ return self.cache[token]
242
+ word = tuple(token)
243
+ pairs = get_pairs(word)
244
+
245
+ if not pairs:
246
+ return token
247
+
248
+ while True:
249
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
250
+ if bigram not in self.bpe_ranks:
251
+ break
252
+ first, second = bigram
253
+ new_word = []
254
+ i = 0
255
+ while i < len(word):
256
+ try:
257
+ j = word.index(first, i)
258
+ except ValueError:
259
+ new_word.extend(word[i:])
260
+ break
261
+ else:
262
+ new_word.extend(word[i:j])
263
+ i = j
264
+
265
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
266
+ new_word.append(first + second)
267
+ i += 2
268
+ else:
269
+ new_word.append(word[i])
270
+ i += 1
271
+ new_word = tuple(new_word)
272
+ word = new_word
273
+ if len(word) == 1:
274
+ break
275
+ else:
276
+ pairs = get_pairs(word)
277
+ word = " ".join(word)
278
+ self.cache[token] = word
279
+ return word
280
+
281
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
282
+ if self.add_bos_token:
283
+ bos_token_ids = [self.bos_token_id]
284
+ else:
285
+ bos_token_ids = []
286
+
287
+ output = bos_token_ids + token_ids_0
288
+
289
+ if token_ids_1 is None:
290
+ return output
291
+
292
+ return output + bos_token_ids + token_ids_1
293
+
294
+ def tokenize(self, text: TextInput, **kwargs) -> List[str]:
295
+ def _encode_imgurl(img_tokens):
296
+ assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag
297
+ img_tokens = img_tokens[1:-1]
298
+ img_url = ''.join(img_tokens)
299
+ out_img_tokens = list(img_url)
300
+ if len(out_img_tokens) > IMG_TOKEN_SPAN:
301
+ raise ValueError("The content in {}..{} is too long".format(self.image_start_tag, self.image_end_tag))
302
+ out_img_tokens.extend([self.image_pad_tag] * (IMG_TOKEN_SPAN - len(out_img_tokens)))
303
+ out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag]
304
+ return out_img_tokens
305
+
306
+ tokens = super().tokenize(text, **kwargs)
307
+ tokens = _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl)
308
+ return tokens
309
+
310
+ def _tokenize(self, text):
311
+ """Tokenize a string."""
312
+
313
+ bpe_tokens = []
314
+ for token in re.findall(self.pat, text):
315
+ token = "".join(
316
+ self.byte_encoder[b] for b in token.encode("utf-8")
317
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
318
+ bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
319
+ return bpe_tokens
320
+
321
+ def _convert_token_to_id(self, token):
322
+ """Converts a token (str) in an id using the vocab."""
323
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
324
+
325
+ def _convert_id_to_token(self, index):
326
+ """Converts an index (integer) in a token (str) using the vocab."""
327
+ return self.decoder.get(index)
328
+
329
+ def convert_tokens_to_string(self, tokens):
330
+ """Converts a sequence of tokens (string) in a single string."""
331
+ text = "".join(tokens)
332
+ text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
333
+ return text
334
+
335
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
336
+ if not os.path.isdir(save_directory):
337
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
338
+ return
339
+ vocab_file = os.path.join(
340
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
341
+ )
342
+ merge_file = os.path.join(
343
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
344
+ )
345
+
346
+ with open(vocab_file, "w", encoding="utf-8") as f:
347
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
348
+
349
+ index = 0
350
+ with open(merge_file, "w", encoding="utf-8") as writer:
351
+ writer.write("#version: 0.2\n")
352
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
353
+ if index != token_index:
354
+ logger.warning(
355
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
356
+ " Please check that the tokenizer is not corrupted!"
357
+ )
358
+ index = token_index
359
+ writer.write(" ".join(bpe_tokens) + "\n")
360
+ index += 1
361
+
362
+ return vocab_file, merge_file
363
+
364
+ def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
365
+ add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
366
+ if is_split_into_words or add_prefix_space:
367
+ text = " " + text
368
+ return (text, kwargs)
369
+
370
+ def decode(
371
+ self,
372
+ token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
373
+ skip_special_tokens: bool = False,
374
+ clean_up_tokenization_spaces: bool = None,
375
+ truncate_before_pattern: Optional[List[str]] = None,
376
+ **kwargs,
377
+ ) -> str:
378
+ """
379
+ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
380
+ tokens and clean up tokenization spaces.
381
+
382
+ Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
383
+
384
+ Args:
385
+ token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
386
+ List of tokenized input ids. Can be obtained using the `__call__` method.
387
+ skip_special_tokens (`bool`, *optional*, defaults to `False`):
388
+ Whether or not to remove special tokens in the decoding.
389
+ clean_up_tokenization_spaces (`bool`, *optional*):
390
+ Whether or not to clean up the tokenization spaces. If `None`, will default to
391
+ `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`).
392
+ truncate_before_pattern (`List[str]`, *optional*, defaults to `None`):
393
+ A list of regular expression strings that will be used to truncate the returned string. This can be
394
+ used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning
395
+ of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`.
396
+ kwargs (additional keyword arguments, *optional*):
397
+ Will be passed to the underlying model specific decode method.
398
+
399
+ Returns:
400
+ `str`: The decoded sentence.
401
+ """
402
+
403
+ token_ids = to_py_obj(token_ids)
404
+
405
+ decoded_text = self._decode(
406
+ token_ids=token_ids,
407
+ skip_special_tokens=skip_special_tokens,
408
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
409
+ **kwargs,
410
+ )
411
+
412
+ if truncate_before_pattern is not None and len(truncate_before_pattern) > 0:
413
+ decoded_text = self.truncate(decoded_text, truncate_before_pattern)
414
+
415
+ return decoded_text
416
+
417
+ def _decode(
418
+ self,
419
+ token_ids: List[int],
420
+ skip_special_tokens: bool = False,
421
+ clean_up_tokenization_spaces: bool = None,
422
+ spaces_between_special_tokens: bool = True,
423
+ **kwargs,
424
+ ) -> str:
425
+
426
+ def _decode_imgurl(img_token_ids):
427
+ assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id
428
+ img_token_ids = img_token_ids[1:-1]
429
+ img_token_ids = img_token_ids[: img_token_ids.index(self.img_pad_id)]
430
+ return [self.img_start_id] + img_token_ids + [self.img_end_id]
431
+
432
+ token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl)
433
+
434
+ return super()._decode(
435
+ token_ids, skip_special_tokens, clean_up_tokenization_spaces, spaces_between_special_tokens, **kwargs
436
+ )
437
+
438
+ def truncate(self, completion, truncate_before_pattern):
439
+ def find_re(string, pattern, start_pos):
440
+ m = pattern.search(string, start_pos)
441
+ return m.start() if m else -1
442
+
443
+ terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern]
444
+
445
+ prints = list(re.finditer("^print", completion, re.MULTILINE))
446
+
447
+ if len(prints) > 1:
448
+ completion = completion[: prints[1].start()]
449
+
450
+ defs = list(re.finditer("^def", completion, re.MULTILINE))
451
+
452
+ if len(defs) > 1:
453
+ completion = completion[: defs[1].start()]
454
+
455
+ start_pos = 0
456
+
457
+ terminals_pos = [
458
+ pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1
459
+ ]
460
+
461
+ if len(terminals_pos) > 0:
462
+ return completion[: min(terminals_pos)]
463
+ else:
464
+ return completion
465
+
466
+ def from_list_format(self, list_format: List[Dict]):
467
+ text = ''
468
+ num_images = 0
469
+ for ele in list_format:
470
+ if 'image' in ele:
471
+ num_images += 1
472
+ text += f'Picture {num_images}:'
473
+ text += self.image_start_tag + ele['image'] + self.image_end_tag
474
+ text += '\n'
475
+ elif 'text' in ele:
476
+ text += ele['text']
477
+ elif 'box' in ele:
478
+ if 'ref' in ele:
479
+ text += self.ref_start_tag + ele['ref'] + self.ref_end_tag
480
+ for box in ele['box']:
481
+ text += self.box_start_tag + '(%d,%d),(%d,%d)' % (box[0], box[1], box[2], box[3]) + self.box_end_tag
482
+ else:
483
+ raise ValueError("Unsupport element: " + str(ele))
484
+ return text
485
+
486
+ def to_list_format(self, text: str):
487
+ token_ids = self.encode(text)
488
+
489
+ def _encode_vl_info(tokens):
490
+ if len(tokens) == 0:
491
+ return []
492
+ if tokens[0] == self.img_start_id and tokens[-1] == self.img_end_id:
493
+ key = 'image'
494
+ elif tokens[0] == self.ref_start_id and tokens[-1] == self.ref_end_id:
495
+ key = 'ref'
496
+ elif tokens[0] == self.box_start_id and tokens[-1] == self.box_end_id:
497
+ key = 'box'
498
+ elif tokens[0] == self.quad_start_id and tokens[-1] == self.quad_end_id:
499
+ key = 'quad'
500
+ else:
501
+ val = self.decode(tokens)
502
+ return [{'text': val}]
503
+ tokens = [token for token in tokens[1:-1] if token != self.img_pad_id]
504
+ val = self.decode(tokens, skip_special_tokens=True)
505
+ return [{key: val}]
506
+
507
+ return _replace_closed_tag(
508
+ token_ids,
509
+ (self.img_start_id, self.ref_start_id, self.box_start_id, self.quad_start_id),
510
+ (self.img_end_id, self.ref_end_id, self.box_end_id, self.quad_end_id),
511
+ _encode_vl_info,
512
+ _encode_vl_info,
513
+ )
514
+
515
+ def _fetch_latest_picture(self, response, history):
516
+ if history is None:
517
+ history = []
518
+ _history = history + [(response, None)]
519
+ for q, r in _history[::-1]:
520
+ for ele in self.to_list_format(q)[::-1]:
521
+ if 'image' in ele:
522
+ return ele['image']
523
+ return None
524
+
525
+ def _fetch_all_box_with_ref(self, text):
526
+ list_format = self.to_list_format(text)
527
+ output = []
528
+ for i, ele in enumerate(list_format):
529
+ if 'box' in ele:
530
+ bbox = tuple(map(int, ele['box'].replace('(', '').replace(')', '').split(',')))
531
+ assert len(bbox) == 4
532
+ output.append({'box': bbox})
533
+ if i > 0 and 'ref' in list_format[i - 1]:
534
+ output[-1]['ref'] = list_format[i - 1]['ref'].strip()
535
+ return output
536
+
537
+ def draw_bbox_on_latest_picture(
538
+ self,
539
+ response,
540
+ history=None,
541
+ ) -> Optional[Image.Image]:
542
+ image = self._fetch_latest_picture(response, history)
543
+ if image is None:
544
+ return None
545
+ if image.startswith("http://") or image.startswith("https://"):
546
+ image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
547
+ h, w = image.height, image.width
548
+ else:
549
+ image = np.asarray(Image.open(image).convert("RGB"))
550
+ h, w = image.shape[0], image.shape[1]
551
+ visualizer = Visualizer(image)
552
+
553
+ boxes = self._fetch_all_box_with_ref(response)
554
+ if not boxes:
555
+ return None
556
+ color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) # init color
557
+ for box in boxes:
558
+ if 'ref' in box: # random new color for new refexps
559
+ color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()])
560
+ x1, y1, x2, y2 = box['box']
561
+ x1, y1, x2, y2 = (int(x1 / 1000 * w), int(y1 / 1000 * h), int(x2 / 1000 * w), int(y2 / 1000 * h))
562
+ visualizer.draw_box((x1, y1, x2, y2), alpha=1, edge_color=color)
563
+ if 'ref' in box:
564
+ visualizer.draw_text(box['ref'], (x1, y1), color=color, horizontal_alignment="left")
565
+ return visualizer.output
566
+
567
+
568
+ class VisImage:
569
+ def __init__(self, img, scale=1.0):
570
+ self.img = img
571
+ self.scale = scale
572
+ self.width, self.height = img.shape[1], img.shape[0]
573
+ self._setup_figure(img)
574
+
575
+ def _setup_figure(self, img):
576
+ fig = mplfigure.Figure(frameon=False)
577
+ self.dpi = fig.get_dpi()
578
+ # add a small 1e-2 to avoid precision lost due to matplotlib's truncation
579
+ # (https://github.com/matplotlib/matplotlib/issues/15363)
580
+ fig.set_size_inches(
581
+ (self.width * self.scale + 1e-2) / self.dpi,
582
+ (self.height * self.scale + 1e-2) / self.dpi,
583
+ )
584
+ self.canvas = FigureCanvasAgg(fig)
585
+ # self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
586
+ ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
587
+ ax.axis("off")
588
+ self.fig = fig
589
+ self.ax = ax
590
+ self.reset_image(img)
591
+
592
+ def reset_image(self, img):
593
+ img = img.astype("uint8")
594
+ self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")
595
+
596
+ def save(self, filepath):
597
+ self.fig.savefig(filepath)
598
+
599
+ def get_image(self):
600
+ canvas = self.canvas
601
+ s, (width, height) = canvas.print_to_buffer()
602
+
603
+ buffer = np.frombuffer(s, dtype="uint8")
604
+
605
+ img_rgba = buffer.reshape(height, width, 4)
606
+ rgb, alpha = np.split(img_rgba, [3], axis=2)
607
+ return rgb.astype("uint8")
608
+
609
+
610
+ class Visualizer:
611
+ def __init__(self, img_rgb, metadata=None, scale=1.0):
612
+ self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
613
+ self.output = VisImage(self.img, scale=scale)
614
+ self.cpu_device = torch.device("cpu")
615
+
616
+ # too small texts are useless, therefore clamp to 14
617
+ self._default_font_size = max(
618
+ np.sqrt(self.output.height * self.output.width) // 30, 15 // scale
619
+ )
620
+
621
+ def draw_text(
622
+ self,
623
+ text,
624
+ position,
625
+ *,
626
+ font_size=None,
627
+ color="g",
628
+ horizontal_alignment="center",
629
+ rotation=0,
630
+ ):
631
+ if not font_size:
632
+ font_size = self._default_font_size
633
+
634
+ # since the text background is dark, we don't want the text to be dark
635
+ color = np.maximum(list(mplc.to_rgb(color)), 0.2)
636
+ color[np.argmax(color)] = max(0.8, np.max(color))
637
+
638
+ x, y = position
639
+ self.output.ax.text(
640
+ x,
641
+ y,
642
+ text,
643
+ size=font_size * self.output.scale,
644
+ bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
645
+ verticalalignment="top",
646
+ horizontalalignment=horizontal_alignment,
647
+ color=color,
648
+ zorder=10,
649
+ rotation=rotation,
650
+ )
651
+ return self.output
652
+
653
+ def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
654
+ x0, y0, x1, y1 = box_coord
655
+ width = x1 - x0
656
+ height = y1 - y0
657
+
658
+ linewidth = max(self._default_font_size / 4, 1)
659
+
660
+ self.output.ax.add_patch(
661
+ mpl.patches.Rectangle(
662
+ (x0, y0),
663
+ width,
664
+ height,
665
+ fill=False,
666
+ edgecolor=edge_color,
667
+ linewidth=linewidth * self.output.scale,
668
+ alpha=alpha,
669
+ linestyle=line_style,
670
+ )
671
+ )
672
+ return self.output
673
+
674
+ def get_output(self):
675
+ return self.output