File size: 2,143 Bytes
4feef48 4e776b9 4feef48 4e776b9 4feef48 4e776b9 4feef48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
tags:
- generated_from_trainer
model-index:
- name: TrOCR-SIN(DeiT)
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TrOCR-SIN(DeiT)
This model is a fine-tuned version of [](https://huggingface.co./) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4335
- Cer: 0.1445
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 75000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Cer | Validation Loss |
|:-------------:|:-----:|:-----:|:------:|:---------------:|
| 1.3019 | 1.78 | 5000 | 0.6416 | 1.7769 |
| 0.6387 | 3.55 | 10000 | 0.4048 | 0.8457 |
| 0.3402 | 5.33 | 15000 | 0.2808 | 0.6898 |
| 0.1332 | 7.11 | 20000 | 0.2377 | 0.5765 |
| 0.1141 | 8.89 | 25000 | 0.2223 | 0.4460 |
| 0.0481 | 10.66 | 30000 | 0.1868 | 0.4128 |
| 0.0391 | 12.44 | 35000 | 0.1563 | 0.4172 |
| 0.0357 | 14.22 | 40000 | 0.1981 | 0.4756 |
| 0.0215 | 16.0 | 45000 | 0.1983 | 0.5838 |
| 0.0129 | 17.77 | 50000 | 0.1757 | 0.5511 |
| 0.0087 | 19.55 | 55000 | 0.1699 | 0.5568 |
| 0.003 | 21.33 | 60000 | 0.1648 | 0.4532 |
| 0.0042 | 23.11 | 65000 | 0.1582 | 0.4650 |
| 0.0066 | 24.88 | 70000 | 0.1654 | 0.4740 |
| 0.0014 | 26.66 | 75000 | 0.1448 | 0.4337 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.1
|