--- library_name: transformers license: apache-2.0 pipeline_tag: image-text-to-text language: - en base_model: - HuggingFaceTB/SmolLM2-1.7B-Instruct - google/siglip-so400m-patch14-384 --- ## SmolVLM SmolVLM can be used for inference on multimodal (image + text) tasks where the input comprises text queries along with one or more images. Text and images can be interleaved arbitrarily, enabling tasks like image captioning, visual question answering, and storytelling based on visual content. The model does not support image generation. To fine-tune SmolVLM on a specific task, you can follow the fine-tuning tutorial. ### Technical Summary SmolVLM leverages the lightweight SmolLM2 language model to provide a compact yet powerful multimodal experience. It introduces several changes compared to previous Idefics models: - **Image compression:** We introduce a more radical image compression compared to Idefics3 to enable the model to infer faster and use less RAM. - **Visual Token Encoding:** SmolVLM uses 81 visual tokens to encode image patches of size 384×384. Larger images are divided into patches, each encoded separately, enhancing efficiency without compromising performance. More details about the training and architecture are available in our technical report. ### How to get started You can use transformers to load, infer and fine-tune SmolVLM. ```python import torch from PIL import Image from transformers import AutoProcessor, AutoModelForVision2Seq from transformers.image_utils import load_image DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Load images image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg") image2 = load_image("https://huggingface.co./spaces/merve/chameleon-7b/resolve/main/bee.jpg") # Initialize processor and model processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct") model = AutoModelForVision2Seq.from_pretrained( "HuggingFaceTB/SmolVLM-Instruct", torch_dtype=torch.bfloat16, _attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager", ).to(DEVICE) # Create input messages messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "image"}, {"type": "text", "text": "Can you describe the two images?"} ] }, ] # Prepare inputs prompt = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(text=prompt, images=[image1, image2], return_tensors="pt") inputs = inputs.to(DEVICE) # Generate outputs generated_ids = model.generate(**inputs, max_new_tokens=500) generated_texts = processor.batch_decode( generated_ids, skip_special_tokens=True, ) print(generated_texts[0]) """ Assistant: The first image shows a green statue of the Statue of Liberty standing on a stone pedestal in front of a body of water. The statue is holding a torch in its right hand and a tablet in its left hand. The water is calm and there are no boats or other objects visible. The sky is clear and there are no clouds. The second image shows a bee on a pink flower. The bee is black and yellow and is collecting pollen from the flower. The flower is surrounded by green leaves. """ ``` ### Our Approach **Instruct SAM** ### Model optimizations **Precision**: For better performance, load and run the model in half-precision (`torch.float16` or `torch.bfloat16`) if your hardware supports it. ```python from transformers import AutoModelForVision2Seq import torch model = AutoModelForVision2Seq.from_pretrained( "HuggingFaceTB/SmolVLM-Instruct", torch_dtype=torch.bfloat16 ).to("cuda") ``` You can also load SmolVLM with 4/8-bit quantization using bitsandbytes, torchao or Quanto. Refer to [this page](https://huggingface.co./docs/transformers/en/main_classes/quantization) for other options. ```python from transformers import AutoModelForVision2Seq, BitsAndBytesConfig import torch quantization_config = BitsAndBytesConfig(load_in_8bit=True) model = AutoModelForVision2Seq.from_pretrained( "HuggingFaceTB/SmolVLM-Instruct", quantization_config=quantization_config, ) ``` **Vision Encoder Efficiency**: Adjust the image resolution by setting `size={"longest_edge": N*384}` when initializing the processor, where N is your desired value. The default `N=4` works well, which results in input images of size 1536×1536. For documents, `N=5` might be beneficial. Decreasing N can save GPU memory and is appropriate for lower-resolution images. This is also useful if you want to fine-tune on videos.