File size: 4,627 Bytes
92233d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from transformers.configuration_utils import PretrainedConfig


class LlamaMoEConfig(PretrainedConfig):
    model_type = "llama_moe"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=4096,
        intermediate_size=11008,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=None,
        hidden_act="silu",
        max_position_embeddings=2048,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        pretraining_tp=1,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        rope_scaling=None,
        attention_bias=False,
        attention_dropout=0.0,
        # -------- moe expert configs --------
        num_experts=16,
        num_selects=4,
        size_experts=None,
        # -------- moe gate configs --------
        gate_type="TopKBalancedNoisyGate",
        gate_network="mlp",
        gate_use_softmax=True,
        gate_use_balance=True,
        gate_balance_loss_weight=1e-2,
        gate_add_noise=True,
        # TopKBalancedNoisyGate
        gate_noise_epsilon=1e-2,
        # -------- moe calculator configs --------
        calculator_type="UniversalCalculator",
        multiply_gate_scores=True,
        score_scale_factor=1.0,
        add_weight_norm=False,
        # SwitchDropTokenCalculator
        drop_tokens=True,
        dropped_padding="zero",
        capacity_factor=1.25,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.pretraining_tp = pretraining_tp
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self._rope_scaling_validation()
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout

        self.num_experts = num_experts
        self.num_selects = num_selects
        self.size_experts = size_experts

        self.gate_type = gate_type
        self.gate_network = gate_network
        self.gate_use_softmax = gate_use_softmax
        self.gate_use_balance = gate_use_balance
        self.gate_balance_loss_weight = gate_balance_loss_weight
        self.gate_add_noise = gate_add_noise
        self.gate_noise_epsilon = gate_noise_epsilon

        self.calculator_type = calculator_type
        self.multiply_gate_scores = multiply_gate_scores
        self.score_scale_factor = score_scale_factor
        self.add_weight_norm = add_weight_norm
        self.drop_tokens = drop_tokens
        self.dropped_padding = dropped_padding
        self.capacity_factor = capacity_factor

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

    def _rope_scaling_validation(self):
        """
        Validate the `rope_scaling` configuration.
        """
        if self.rope_scaling is None:
            return

        if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
            raise ValueError(
                "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
                f"got {self.rope_scaling}"
            )
        rope_scaling_type = self.rope_scaling.get("type", None)
        rope_scaling_factor = self.rope_scaling.get("factor", None)
        if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
            raise ValueError(
                f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
            )
        if (
            rope_scaling_factor is None
            or not isinstance(rope_scaling_factor, float)
            or rope_scaling_factor <= 1.0
        ):
            raise ValueError(
                f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}"
            )