|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
|
|
class LlamaMoEConfig(PretrainedConfig): |
|
model_type = "llama_moe" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=4096, |
|
intermediate_size=11008, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=None, |
|
hidden_act="silu", |
|
max_position_embeddings=2048, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
pad_token_id=0, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
pretraining_tp=1, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
attention_bias=False, |
|
attention_dropout=0.0, |
|
|
|
num_experts=16, |
|
num_selects=4, |
|
size_experts=None, |
|
|
|
gate_type="TopKBalancedNoisyGate", |
|
gate_network="mlp", |
|
gate_use_softmax=True, |
|
gate_use_balance=True, |
|
gate_balance_loss_weight=1e-2, |
|
gate_add_noise=True, |
|
|
|
gate_noise_epsilon=1e-2, |
|
|
|
calculator_type="UniversalCalculator", |
|
multiply_gate_scores=True, |
|
score_scale_factor=1.0, |
|
add_weight_norm=False, |
|
|
|
drop_tokens=True, |
|
dropped_padding="zero", |
|
capacity_factor=1.25, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.pretraining_tp = pretraining_tp |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self._rope_scaling_validation() |
|
self.attention_bias = attention_bias |
|
self.attention_dropout = attention_dropout |
|
|
|
self.num_experts = num_experts |
|
self.num_selects = num_selects |
|
self.size_experts = size_experts |
|
|
|
self.gate_type = gate_type |
|
self.gate_network = gate_network |
|
self.gate_use_softmax = gate_use_softmax |
|
self.gate_use_balance = gate_use_balance |
|
self.gate_balance_loss_weight = gate_balance_loss_weight |
|
self.gate_add_noise = gate_add_noise |
|
self.gate_noise_epsilon = gate_noise_epsilon |
|
|
|
self.calculator_type = calculator_type |
|
self.multiply_gate_scores = multiply_gate_scores |
|
self.score_scale_factor = score_scale_factor |
|
self.add_weight_norm = add_weight_norm |
|
self.drop_tokens = drop_tokens |
|
self.dropped_padding = dropped_padding |
|
self.capacity_factor = capacity_factor |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
def _rope_scaling_validation(self): |
|
""" |
|
Validate the `rope_scaling` configuration. |
|
""" |
|
if self.rope_scaling is None: |
|
return |
|
|
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: |
|
raise ValueError( |
|
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " |
|
f"got {self.rope_scaling}" |
|
) |
|
rope_scaling_type = self.rope_scaling.get("type", None) |
|
rope_scaling_factor = self.rope_scaling.get("factor", None) |
|
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: |
|
raise ValueError( |
|
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" |
|
) |
|
if ( |
|
rope_scaling_factor is None |
|
or not isinstance(rope_scaling_factor, float) |
|
or rope_scaling_factor <= 1.0 |
|
): |
|
raise ValueError( |
|
f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" |
|
) |
|
|