File size: 36,036 Bytes
b386a77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
diff --git a/.gitignore b/.gitignore
index c243024..8c28ce3 100644
--- a/.gitignore
+++ b/.gitignore
@@ -175,6 +175,7 @@ debug.py
 wandb/
 nohup.out
 lm-evaluation-harness/
+bigcode-evaluation-harness/
 results/**/*.json
 results/**/*.jsonl
 results/**/*.db
diff --git a/README.md b/README.md
index 8813a32..b276a78 100644
--- a/README.md
+++ b/README.md
@@ -26,6 +26,11 @@ bash scripts/data.sh
 git clone https://github.com/EleutherAI/lm-evaluation-harness.git
 cd lm-evaluation-harness
 pip install -e .
+# commit: 9cfa52b
+git clone https://github.com/bigcode-project/bigcode-evaluation-harness.git
+cd bigcode-evaluation-harness
+# change `pyext==0.5` in `bigcode-evaluation-harness/requirements.txt`, ref: https://github.com/bigcode-project/bigcode-evaluation-harness/pull/181
+pip install -e .
 ```
 
 ## 📃 TODO
diff --git a/scripts/eval.sh b/scripts/eval.sh
deleted file mode 100644
index 4f41b37..0000000
--- a/scripts/eval.sh
+++ /dev/null
@@ -1,96 +0,0 @@
-# nohup srun -p MoE --gres gpu:1 bash scripts/eval.sh all /mnt/petrelfs/share_data/quxiaoye/models/Sheared-LLaMA-2.7B True results/Sheared-LLaMA-2.7B 1>logs/eval-all-Sheared-LLaMA-2.7B.log 2>&1 &
-
-mmlu() {
-    # MMLU: https://github.com/princeton-nlp/LLM-Shearing/blob/20ebd2645a8ff5fa65874e1347f9891b80e01805/icl_eval/run_eval.sh#L18
-    MODEL=$1
-    TRUST_REMOTE_CODE=$2
-    RESULT_DIR=$3
-    mkdir -p $RESULT_DIR
-
-    lm_eval \
-        --model hf \
-        --model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
-        --tasks mmlu_computer_security,mmlu_high_school_chemistry,mmlu_philosophy,mmlu_elementary_mathematics,mmlu_prehistory,mmlu_formal_logic,mmlu_high_school_mathematics,mmlu_econometrics,mmlu_moral_scenarios,mmlu_college_mathematics,mmlu_high_school_government_and_politics,mmlu_us_foreign_policy,mmlu_high_school_world_history,mmlu_conceptual_physics,mmlu_college_medicine,mmlu_international_law,mmlu_abstract_algebra,mmlu_logical_fallacies,mmlu_machine_learning,mmlu_medical_genetics,mmlu_public_relations,mmlu_college_biology,mmlu_marketing,mmlu_electrical_engineering,mmlu_anatomy,mmlu_high_school_us_history,mmlu_high_school_biology,mmlu_miscellaneous,mmlu_high_school_psychology,mmlu_sociology,mmlu_business_ethics,mmlu_high_school_geography,mmlu_human_aging,mmlu_high_school_statistics,mmlu_moral_disputes,mmlu_professional_psychology,mmlu_global_facts,mmlu_college_physics,mmlu_nutrition,mmlu_high_school_macroeconomics,mmlu_world_religions,mmlu_professional_medicine,mmlu_high_school_computer_science,mmlu_college_chemistry,mmlu_human_sexuality,mmlu_high_school_microeconomics,mmlu_astronomy,mmlu_professional_accounting,mmlu_high_school_european_history,mmlu_jurisprudence,mmlu_professional_law,mmlu_high_school_physics,mmlu_virology,mmlu_management,mmlu_college_computer_science,mmlu_clinical_knowledge,mmlu_security_studies \
-        --num_fewshot 5 \
-        --device cuda:0 \
-        --batch_size auto \
-        --verbosity DEBUG \
-        --output_path $RESULT_DIR/mmlu.json
-}
-
-bbh() {
-    # Big Bench Hard (BBH): https://arxiv.org/pdf/2210.09261.pdf
-    MODEL=$1
-    TRUST_REMOTE_CODE=$2
-    RESULT_DIR=$3
-    mkdir -p $RESULT_DIR
-
-    lm_eval \
-        --log_samples \
-        --model hf \
-        --model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
-        --tasks bbh_fewshot_boolean_expressions,bbh_fewshot_causal_judgement,bbh_fewshot_date_understanding,bbh_fewshot_disambiguation_qa,bbh_fewshot_dyck_languages,bbh_fewshot_formal_fallacies,bbh_fewshot_geometric_shapes,bbh_fewshot_hyperbaton,bbh_fewshot_logical_deduction_five_objects,bbh_fewshot_logical_deduction_seven_objects,bbh_fewshot_logical_deduction_three_objects,bbh_fewshot_movie_recommendation,bbh_fewshot_multistep_arithmetic_two,bbh_fewshot_navigate,bbh_fewshot_object_counting,bbh_fewshot_penguins_in_a_table,bbh_fewshot_reasoning_about_colored_objects,bbh_fewshot_ruin_names,bbh_fewshot_salient_translation_error_detection,bbh_fewshot_snarks,bbh_fewshot_sports_understanding,bbh_fewshot_temporal_sequences,bbh_fewshot_tracking_shuffled_objects_five_objects,bbh_fewshot_tracking_shuffled_objects_seven_objects,bbh_fewshot_tracking_shuffled_objects_three_objects,bbh_fewshot_web_of_lies,bbh_fewshot_word_sorting \
-        --device cuda:0 \
-        --batch_size auto \
-        --verbosity DEBUG \
-        --output_path $RESULT_DIR/bbh.json
-}
-
-reasoning() {
-    MODEL=$1
-    TRUST_REMOTE_CODE=$2
-    RESULT_DIR=$3
-    mkdir -p $RESULT_DIR
-
-    lm_eval \
-        --log_samples \
-        --model hf \
-        --model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
-        --tasks gsm8k_cot \
-        --device cuda:0 \
-        --batch_size auto \
-        --verbosity DEBUG \
-        --output_path $RESULT_DIR/reasoning.json
-}
-
-qa() {
-    MODEL=$1
-    TRUST_REMOTE_CODE=$2
-    RESULT_DIR=$3
-    mkdir -p $RESULT_DIR
-
-    lm_eval \
-        --log_samples \
-        --model hf \
-        --model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
-        --tasks arc_easy,arc_challenge,boolq \
-        --num_fewshot 0 \
-        --device cuda:0 \
-        --batch_size auto \
-        --verbosity DEBUG \
-        --output_path $RESULT_DIR/qa.json
-}
-
-EVAL_TASK=$1
-shift 1
-start=$(date +%s)
-case $EVAL_TASK in
-    mmlu)
-        mmlu $* ;;
-    bbh)
-        bbh $* ;;
-    reasoning)
-        reasoning $* ;;
-    qa)
-        qa $* ;;
-    all)
-        mmlu $*
-        bbh $*
-        reasoning $*
-        qa $*
-        ;;
-    *)
-        echo "$EVAL_TASK not recognized!";;
-esac
-end=$(date +%s)
-echo "Elapsed Time: $(($end-$start)) seconds"
diff --git a/scripts/four_mix/freeze_gate.sh b/scripts/four_mix/freeze_gate.sh
index d94d78c..70afb8e 100644
--- a/scripts/four_mix/freeze_gate.sh
+++ b/scripts/four_mix/freeze_gate.sh
@@ -83,8 +83,11 @@ num_gpus=4
 
     python -m src.eval.gen_mt_ans \
         --model-path $output_dir \
-        --model-id $task_name \
-        --num-gpus-total $num_gpus
+        --model-id $task_name
+
+    python -m src.eval.gen_alpaca_eval_ans \
+        --model-path $output_dir \
+        --model-id $task_name
 }
 
 # nohup srun -p MoE --ntasks-per-node=1 --cpus-per-task=16 --mem=128G --nodes=1 --gres=gpu:4 bash "/mnt/petrelfs/zhutong/adaptive-sft-for-moe/scripts/one_data_steps_dynamic.sh" "llama_moe_orca_epochs_cluster_4" "auto" "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new" "data/open_orca_clustered/4" "data/open_orca_clustered_eval/4" 1>logs/llama_moe_orca_cluster_4_dynamic.log 2>&1 &
diff --git a/scripts/gen_mt_bench_ans.sh b/scripts/gen_mt_bench_ans.sh
deleted file mode 100644
index f251644..0000000
--- a/scripts/gen_mt_bench_ans.sh
+++ /dev/null
@@ -1,32 +0,0 @@
-#!/usr/bin/bash
-
-#SBATCH --job-name=moe_gen
-#SBATCH --output=logs/%x-%j.log
-#SBATCH --error=logs/%x-%j.log
-
-#SBATCH --partition=MoE
-#SBATCH --ntasks-per-node=1
-#SBATCH --cpus-per-task=16
-#SBATCH --mem=64G
-
-#SBATCH --nodes=1
-#SBATCH --gres=gpu:1
-#SBATCH --quotatype=auto
-
-{
-    # python -m fastchat.llm_judge.gen_model_answer \
-    #     --model-path outputs/sheared_llama_sharegpt/moe_sft-2411306 \
-    #     --model-id sheared_llama_sharegpt
-
-    # python -m fastchat.llm_judge.gen_model_answer \
-    #     --model-path outputs/sheared_llama_uniform_mix/moe_sft-2421072 \
-    #     --model-id sheared_llama_uniform_mix
-
-    bash scripts/cp_model_files.sh outputs/llama_moe/moe_sft-2409782
-    python -m fastchat.llm_judge.gen_model_answer \
-        --model-path outputs/llama_moe/moe_sft-2409782 \
-        --model-id llama_moe_uniform_mix
-}
-
-# nohup srun -p MoE -n1 -N1 --gres=gpu:1 --quotatype spot python -m fastchat.llm_judge.gen_model_answer --model-path outputs/sheared_llama_sharegpt/moe_sft-2411306 --model-id sheared_llama_sharegpt 1>logs/mt_bench_gen_sheared_llama_sharegpt.log 2>&1 &
-# nohup srun -p MoE -n1 -N1 --gres=gpu:1 --quotatype spot python -m fastchat.llm_judge.gen_model_answer --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/llama_moe_sharegpt/moe_sft-2411309 --model-id llama_moe_sharegpt 1>logs/mt_bench_gen_llama_moe_sharegpt.log 2>&1 &
diff --git a/scripts/multi.sh b/scripts/multi.sh
index bcd83b8..e399761 100644
--- a/scripts/multi.sh
+++ b/scripts/multi.sh
@@ -100,5 +100,8 @@ nohup srun -p MoE --ntasks-per-node=1 --cpus-per-task=16 --mem=128G --nodes=1 --
 nohup srun -p MoE --gres gpu:1 python -m src.eval.gen_mt_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/llama_moe_four_mix_uniform/bash-2485396 --model-id llama_moe_four_mix_uniform 1>logs/gen_mt_ans-llama_moe_four_mix_uniform.log 2>&1 &
 nohup srun -p MoE --gres gpu:1 python -m src.eval.gen_mt_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/sheared_four_mix_uniform/bash-2485397 --model-id sheared_four_mix_uniform 1>logs/gen_mt_ans-sheared_four_mix_uniform.log 2>&1 &
 
-nohup srun -p MoE --gres gpu:1 python -m src.eval.get_alpaca_eval_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/llama_moe_four_mix_uniform/bash-2485396 --model-id llama_moe_four_mix_uniform 1>logs/gen_alpaca_eval-llama_moe_four_mix_uniform.log 2>&1 &
-nohup srun -p MoE --gres gpu:1 python -m src.eval.get_alpaca_eval_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/sheared_four_mix_uniform/bash-2485397 --model-id sheared_four_mix_uniform 1>logs/gen_alpaca_eval-sheared_four_mix_uniform.log 2>&1 &
+nohup srun -p MoE --gres gpu:1 python -m src.eval.gen_alpaca_eval_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/llama_moe_four_mix_uniform/bash-2485396 --model-id llama_moe_four_mix_uniform 1>logs/gen_alpaca_eval-llama_moe_four_mix_uniform.log 2>&1 &
+nohup srun -p MoE --gres gpu:1 python -m src.eval.gen_alpaca_eval_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/sheared_four_mix_uniform/bash-2485397 --model-id sheared_four_mix_uniform 1>logs/gen_alpaca_eval-sheared_four_mix_uniform.log 2>&1 &
+
+nohup srun -p MoE --gres gpu:1 bash scripts/eval/eval.sh reasoning /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad_wo_gate_noise/moe_sft-2492650 True results/llama_moe_four_mix_wo_pad_wo_gate_noise 1>logs/eval-reasoning-llama_moe_four_mix_wo_pad_wo_gate_noise.log 2>&1 &
+nohup srun -p MoE --gres gpu:1 bash scripts/eval/eval.sh reasoning /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad/moe_sft-2491633 True results/llama_moe_four_mix_wo_pad 1>logs/eval-reasoning-llama_moe_four_mix_wo_pad.log 2>&1 &
diff --git a/src/callbacks.py b/src/callbacks.py
index a750f69..e9d0c04 100644
--- a/src/callbacks.py
+++ b/src/callbacks.py
@@ -6,6 +6,7 @@ import torch
 import numpy as np
 from loguru import logger
 from transformers.trainer_callback import TrainerCallback, TrainerState, TrainerControl
+from transformers.utils import is_flash_attn_2_available
 
 from src.utils.config import TrainingArguments
 from src.utils.io import append_jsonlines
@@ -22,6 +23,7 @@ class AdaptiveSamplingCallback(TrainerCallback):
         criterion: Optional[Literal["min", "max", "mean"]] = "mean",
         sim_type: Optional[Literal["cos", "l2"]] = "cos",
     ):
+        assert is_flash_attn_2_available(), "Make sure you have flash-attn installed"
         self.criterion = criterion
         self.sim_type = sim_type
         self.prob_map = {}
@@ -74,8 +76,8 @@ class AdaptiveSamplingCallback(TrainerCallback):
         cls,
         ori_weights: np.ndarray,
         delta: np.ndarray,
-        eta: float = 1.0,
-        c: float = 1e-4,
+        eta: float = 10.0,
+        c: float = 5e-2,
     ) -> np.ndarray:
         def _softmax(vec: np.ndarray) -> np.ndarray:
             exps = np.exp(vec - np.max(vec))
diff --git a/src/core/train.py b/src/core/train.py
index 2be5558..9b1f694 100644
--- a/src/core/train.py
+++ b/src/core/train.py
@@ -7,13 +7,12 @@ from loguru import logger
 from src.utils.config import ModelArguments, DataArguments, TrainingArguments
 from src.data import (
     SubDirWeightedPackedJsonlDataset,
-    get_uniform_sampling_ratio,
     fault_tolerance_data_collator,
     CachedJsonlDataset,
     get_cached_datasets_from_dir,
 )
 from src.utils.io import trainer_save_model_safe
-from src.models import LlamaMoEForCausalLM, LlamaMoEConfig
+from src.models import LlamaMoEForCausalLM, LlamaMoEConfig, DeepseekConfig, DeepseekForCausalLM
 from src.trainer import GateLoadRecordingTrainer
 from src.callbacks import AdaptiveSamplingCallback
 
@@ -36,6 +35,9 @@ def get_model_and_tokenizer(
     elif model_type == "llama_moe":
         ConfigClass = LlamaMoEConfig
         ModelClass = LlamaMoEForCausalLM
+    elif model_type == "deepseek":
+        ConfigClass = DeepseekConfig
+        ModelClass = DeepseekForCausalLM
     else:
         raise ValueError(f"Unknown model type: {model_type}")
 
@@ -54,6 +56,21 @@ def get_model_and_tokenizer(
         config.update(additional_config)
     logger.info("Config ready")
 
+    tokenizer = transformers.AutoTokenizer.from_pretrained(
+        model_name_or_path,
+        cache_dir=cache_dir,
+        model_max_length=model_max_length,
+        padding_side=padding_side,
+        use_fast=False,
+        trust_remote_code=trust_remote_code,
+    )
+    if tokenizer.pad_token is None:
+        if tokenizer.unk_token is not None:
+            tokenizer.pad_token = tokenizer.unk_token
+        else:
+            tokenizer.pad_token = tokenizer.eos_token
+    logger.info(f"tokenizer ready, pad_token: {tokenizer.pad_token}")
+
     # Load model and tokenizer
     model = ModelClass.from_pretrained(
         model_name_or_path,
@@ -65,18 +82,6 @@ def get_model_and_tokenizer(
     )
     logger.info("model ready")
 
-    tokenizer = transformers.AutoTokenizer.from_pretrained(
-        model_name_or_path,
-        cache_dir=cache_dir,
-        model_max_length=model_max_length,
-        padding_side=padding_side,
-        use_fast=False,
-        trust_remote_code=trust_remote_code,
-    )
-    if tokenizer.pad_token != tokenizer.unk_token:
-        tokenizer.pad_token = tokenizer.unk_token
-    logger.info("tokenizer ready")
-
     return model, tokenizer
 
 
@@ -117,7 +122,9 @@ def train():
         train_dataset = SubDirWeightedPackedJsonlDataset(
             data_args.dataset_dir_or_path,
             tokenizer,
-            prob_map=get_uniform_sampling_ratio(data_args.dataset_dir_or_path),
+            # prob_map=get_uniform_sampling_ratio(data_args.dataset_dir_or_path),
+            # prob_map={"code": 0.25119094959816823, "math": 0.2674581878910902, "orca": 0.243050776175138, "sharegpt": 0.23830008633560357},
+            prob_map=data_args.prob_map,
             seed=training_args.seed,
         )
     elif datapath.is_file():
diff --git a/src/data.py b/src/data.py
index d783a21..a1a8ff7 100644
--- a/src/data.py
+++ b/src/data.py
@@ -20,6 +20,7 @@ def preprocess(
     instances,
     tokenizer: transformers.PreTrainedTokenizer,
 ) -> Dict:
+    tokenizer_legacy = getattr(tokenizer, "legacy", None)
     conv = Conversation()
     roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
 
@@ -72,7 +73,7 @@ def preprocess(
             # "-2" is hardcoded for the Llama tokenizer to make the offset correct.
             instruction_len = len(tokenizer(parts[0]).input_ids) - 2
 
-            if i != 0 and not tokenizer.legacy:
+            if i != 0 and not tokenizer_legacy:
                 # The legacy and non-legacy modes handle special tokens differently
                 instruction_len -= 1
 
@@ -80,7 +81,7 @@ def preprocess(
             target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID
             cur_len += turn_len
 
-            if i != 0 and not tokenizer.legacy:
+            if i != 0 and not tokenizer_legacy:
                 # The legacy and non-legacy modes handle special tokens differently
                 cur_len -= 1
 
diff --git a/src/eval/get_alpaca_eval_ans.py b/src/eval/get_alpaca_eval_ans.py
deleted file mode 100644
index 1ff3e5e..0000000
--- a/src/eval/get_alpaca_eval_ans.py
+++ /dev/null
@@ -1,113 +0,0 @@
-import argparse
-from pathlib import Path
-
-import torch
-import datasets
-from tqdm import tqdm
-
-from src.core.train import get_model_and_tokenizer
-from src.utils.conversation import Conversation
-from src.utils.io import dump_json
-
-
[email protected]_mode()
-def run_eval(model_path, model_id, max_new_tokens):
-    model, tokenizer = get_model_and_tokenizer(
-        "auto",
-        model_path,
-        torch_dtype=torch.bfloat16,
-        trust_remote_code=True,
-    )
-    model.cuda()
-    model.eval()
-
-    conv = Conversation()
-    outputs = []
-    eval_set = datasets.load_dataset("tatsu-lab/alpaca_eval", "alpaca_eval")["eval"]
-    for example in tqdm(eval_set, desc="Eval"):
-        conv.append_message(conv.roles[0], example["instruction"])
-        conv.append_message(conv.roles[1], None)
-        prompt = conv.get_prompt()
-        input_ids = tokenizer([prompt], return_tensors="pt").input_ids
-        conv.clear_msg()
-        # generate here is a placeholder for your models generations
-        output_ids = model.generate(
-            input_ids.cuda(),
-            do_sample=False,
-            temperature=0.0,
-            max_new_tokens=max_new_tokens,
-        )
-        if model.config.is_encoder_decoder:
-            output_ids = output_ids[0]
-        else:
-            output_ids = output_ids[0][len(input_ids[0]) :]  # noqa: E203
-        # be consistent with the template's stop_token_ids
-        if conv.stop_token_ids:
-            stop_token_ids_index = [
-                i
-                for i, id in enumerate(output_ids)
-                if id in conv.stop_token_ids
-            ]
-            if len(stop_token_ids_index) > 0:
-                output_ids = output_ids[: stop_token_ids_index[0]]
-
-        output = tokenizer.decode(
-            output_ids,
-            spaces_between_special_tokens=False,
-        )
-        if conv.stop_str and isinstance(conv.stop_str, list):
-            stop_str_indices = sorted(
-                [
-                    output.find(stop_str)
-                    for stop_str in conv.stop_str
-                    if output.find(stop_str) > 0
-                ]
-            )
-            if len(stop_str_indices) > 0:
-                output = output[: stop_str_indices[0]]
-        elif conv.stop_str and output.find(conv.stop_str) > 0:
-            output = output[: output.find(conv.stop_str)]
-
-        for special_token in tokenizer.special_tokens_map.values():
-            if isinstance(special_token, list):
-                for special_tok in special_token:
-                    output = output.replace(special_tok, "")
-            else:
-                output = output.replace(special_token, "")
-        output = output.strip()
-
-        if conv.name == "xgen" and output.startswith("Assistant:"):
-            output = output.replace("Assistant:", "", 1).strip()
-
-        example["output"] = output
-        outputs.append(example)
-
-    outpath = Path("results/alpaca_eval") / f"{model_id}.json"
-    dump_json(outputs, outpath, indent=2)
-
-
-if __name__ == "__main__":
-    parser = argparse.ArgumentParser()
-    parser.add_argument(
-        "--model-path",
-        type=str,
-        required=True,
-        help="The path to the weights. This can be a local folder or a Hugging Face repo ID.",
-    )
-    parser.add_argument(
-        "--model-id", type=str, required=True, help="A custom name for the model."
-    )
-    parser.add_argument(
-        "--max-new-token",
-        type=int,
-        default=1024,
-        help="The maximum number of new generated tokens.",
-    )
-
-    args = parser.parse_args()
-
-    run_eval(
-        model_path=args.model_path,
-        model_id=args.model_id,
-        max_new_tokens=args.max_new_token,
-    )
diff --git a/src/eval/show.py b/src/eval/show.py
index d500054..ea0c210 100644
--- a/src/eval/show.py
+++ b/src/eval/show.py
@@ -55,13 +55,13 @@ def collect_results(result_dir: str, verbose: bool = True) -> dict:
             avg = sum(vals) / len(vals)
         tot_vals.append(avg)
         if verbose:
-            logger.info(f"task: {name}, num: {len(tasks.split(','))}, avg: {avg:.3%}")
+            logger.info(f"task: {name}, num: {len(tasks.split(','))}, avg: {100 * avg:.3f} %")
 
     if len(tot_vals) == 0:
         tot_avg = 0.0
     else:
         tot_avg = sum(tot_vals) / len(tot_vals)
-    logger.info(f"total avg: {tot_avg:.3%}")
+    logger.info(f"total avg: {100 * tot_avg:.3f} %")
 
 
 if __name__ == "__main__":
diff --git a/src/models/deepseek/modeling_deepseek.py b/src/models/deepseek/modeling_deepseek.py
index 1dae56e..20498b2 100644
--- a/src/models/deepseek/modeling_deepseek.py
+++ b/src/models/deepseek/modeling_deepseek.py
@@ -20,6 +20,7 @@
 """ PyTorch DeepSeek model."""
 import math
 import warnings
+from dataclasses import dataclass
 from typing import List, Optional, Tuple, Union
 
 import torch
@@ -297,7 +298,7 @@ class DeepseekMLP(nn.Module):
         self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
         self.act_fn = ACT2FN[config.hidden_act]
 
-    def forward(self, x):
+    def forward(self, x, **kwargs):
         if self.config.pretraining_tp > 1:
             slice = self.intermediate_size // self.config.pretraining_tp
             gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
@@ -328,7 +329,9 @@ class DeepseekMLP(nn.Module):
         else:
             down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
 
-        return down_proj
+        bsz, seq_len, _ = x.shape
+        load = torch.zeros(bsz * seq_len, self.config.n_routed_experts)
+        return down_proj, load
 
 
 class MoEGate(nn.Module):
@@ -356,7 +359,10 @@ class MoEGate(nn.Module):
         init.kaiming_uniform_(self.weight, a=math.sqrt(5))
 
     def forward(self, hidden_states):
-        bsz, seq_len, h = hidden_states.shape
+        if len(hidden_states.shape) == 2:
+            bsz, h = hidden_states.shape
+        else:
+            bsz, seq_len, h = hidden_states.shape
         ### compute gating score
         hidden_states = hidden_states.view(-1, h)
         logits = F.linear(hidden_states, self.weight, None)
@@ -404,7 +410,10 @@ class MoEGate(nn.Module):
                 aux_loss = (Pi * fi).sum() * self.alpha
         else:
             aux_loss = None
-        return topk_idx, topk_weight, aux_loss
+        _zeros = torch.zeros_like(logits)
+        _scores_filtered = _zeros.scatter(dim=1, index=topk_idx, src=topk_weight)
+        load = (_scores_filtered > 0).sum(0)
+        return topk_idx, topk_weight, aux_loss, load
 
 
 class AddAuxiliaryLoss(torch.autograd.Function):
@@ -450,10 +459,19 @@ class DeepseekMoE(nn.Module):
                 config=config, intermediate_size=intermediate_size
             )
 
-    def forward(self, hidden_states):
+    def forward(self, hidden_states, attention_mask=None):
+        bsz, seq_len, hsz = hidden_states.shape
+        hidden_states = hidden_states.reshape(-1, hsz)
+        flattened_mask = None
+        flattened_shape = None
+        if attention_mask is not None and len(attention_mask.shape) == 2:
+            flattened_mask = attention_mask.flatten()
+            flattened_shape = flattened_mask.shape
+            hidden_states = hidden_states[flattened_mask.bool()]
+
         identity = hidden_states
         orig_shape = hidden_states.shape
-        topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
+        topk_idx, topk_weight, aux_loss, load = self.gate(hidden_states)
         hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
         flat_topk_idx = topk_idx.view(-1)
         if self.training:
@@ -472,7 +490,15 @@ class DeepseekMoE(nn.Module):
             ).view(*orig_shape)
         if self.config.n_shared_experts is not None:
             y = y + self.shared_experts(identity)
-        return y
+
+        if flattened_mask is not None:
+            _y = torch.zeros(flattened_shape + (hsz,), dtype=y.dtype, device=y.device)
+            _y[flattened_mask.bool()] = y
+            y = _y
+
+        y = y.reshape(bsz, seq_len, hsz)
+
+        return y, load
 
     @torch.no_grad()
     def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
@@ -1163,7 +1189,7 @@ class DeepseekDecoderLayer(nn.Module):
         # Fully Connected
         residual = hidden_states
         hidden_states = self.post_attention_layernorm(hidden_states)
-        hidden_states = self.mlp(hidden_states)
+        hidden_states, load = self.mlp(hidden_states, attention_mask=attention_mask)
         hidden_states = residual + hidden_states
 
         outputs = (hidden_states,)
@@ -1174,6 +1200,8 @@ class DeepseekDecoderLayer(nn.Module):
         if use_cache:
             outputs += (present_key_value,)
 
+        outputs += (load,)
+
         return outputs
 
 
@@ -1220,6 +1248,11 @@ class DeepseekPreTrainedModel(PreTrainedModel):
                 module.weight.data[module.padding_idx].zero_()
 
 
+@dataclass
+class BaseMoEModelOutputWithPast(BaseModelOutputWithPast):
+    gate_load: Optional[torch.Tensor] = None
+
+
 Deepseek_INPUTS_DOCSTRING = r"""
     Args:
         input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
@@ -1429,6 +1462,7 @@ class DeepseekModel(DeepseekPreTrainedModel):
         # decoder layers
         all_hidden_states = () if output_hidden_states else None
         all_self_attns = () if output_attentions else None
+        gate_load = ()
         next_decoder_cache = None
 
         for decoder_layer in self.layers:
@@ -1463,6 +1497,8 @@ class DeepseekModel(DeepseekPreTrainedModel):
             if output_attentions:
                 all_self_attns += (layer_outputs[1],)
 
+            gate_load += (layer_outputs[-1],)
+
         hidden_states = self.norm(hidden_states)
 
         # add hidden states from the last decoder layer
@@ -1482,14 +1518,20 @@ class DeepseekModel(DeepseekPreTrainedModel):
                 for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
                 if v is not None
             )
-        return BaseModelOutputWithPast(
+        return BaseMoEModelOutputWithPast(
             last_hidden_state=hidden_states,
             past_key_values=next_cache,
             hidden_states=all_hidden_states,
             attentions=all_self_attns,
+            gate_load=gate_load,
         )
 
 
+@dataclass
+class MoECausalLMOutputWithPast(CausalLMOutputWithPast):
+    gate_load: Optional[torch.Tensor] = None
+
+
 class DeepseekForCausalLM(DeepseekPreTrainedModel):
     _tied_weights_keys = ["lm_head.weight"]
 
@@ -1620,12 +1662,13 @@ class DeepseekForCausalLM(DeepseekPreTrainedModel):
             output = (logits,) + outputs[1:]
             return (loss,) + output if loss is not None else output
 
-        return CausalLMOutputWithPast(
+        return MoECausalLMOutputWithPast(
             loss=loss,
             logits=logits,
             past_key_values=outputs.past_key_values,
             hidden_states=outputs.hidden_states,
             attentions=outputs.attentions,
+            gate_load=outputs.gate_load,
         )
 
     def prepare_inputs_for_generation(
diff --git a/src/utils/config.py b/src/utils/config.py
index 3ea5283..d4060d9 100644
--- a/src/utils/config.py
+++ b/src/utils/config.py
@@ -6,6 +6,7 @@ import torch
 import transformers
 
 from src.utils.io import load_json
+from src.data import get_uniform_sampling_ratio
 
 
 @dataclass
@@ -33,7 +34,9 @@ class ModelArguments:
     )
     attn_impl: str = field(
         default="flash_attention_2",
-        metadata={"help": "attention implementation, choice from [eager, flash_attention_2, sdpa] (default: `flash_attention_2`)"}
+        metadata={
+            "help": "attention implementation, choice from [eager, flash_attention_2, sdpa] (default: `flash_attention_2`)"
+        },
     )
 
     def __post_init__(self):
@@ -56,6 +59,18 @@ class DataArguments:
         default="data/merged",
         metadata={"help": "Path to dataset directory or a single jsonl file"},
     )
+    prob_map: str = field(
+        default=None,
+        metadata={"help": "Path to the probability map file"},
+    )
+
+    def __post_init__(self):
+        if self.prob_map is not None:
+            if not pathlib.Path(self.prob_map).exists():
+                raise ValueError(f"Probability map file {self.prob_map} not found")
+            self.prob_map = load_json(self.prob_map)
+        else:
+            self.prob_map = get_uniform_sampling_ratio(self.dataset_dir_or_path)
 
 
 @dataclass
@@ -70,9 +85,7 @@ class TrainingArguments(transformers.TrainingArguments):
     )
     max_eval_steps_per_type: int = field(
         default=10,
-        metadata={
-            "help": "Maximum number of steps to perform during evaluation."
-        },
+        metadata={"help": "Maximum number of steps to perform during evaluation."},
     )
     dynamic_sampling_sim_type: Literal["cos", "l2"] = field(
         default="l2",
@@ -88,7 +101,5 @@ class TrainingArguments(transformers.TrainingArguments):
     )
     freeze_gate: bool = field(
         default=False,
-        metadata={
-            "help": "Whether to freeze the gate during training."
-        },
+        metadata={"help": "Whether to freeze the gate during training."},
     )
diff --git a/src/utils/visualization.py b/src/utils/visualization.py
index 794f6c8..02bd236 100644
--- a/src/utils/visualization.py
+++ b/src/utils/visualization.py
@@ -180,6 +180,86 @@ def gate_load_stats(model_dir, data_dir, result_dir, update_strategy: str = "cos
         )
 
 
+def sampling_info_stats(filepath: str, data_type: str, output_dir: str):
+    from pathlib import Path
+    import numpy as np
+    from src.utils.io import load_jsonlines
+
+    Path(output_dir).mkdir(exist_ok=True, parents=True)
+
+    data = load_jsonlines(filepath)
+    step2data = {ins["step"]: ins for ins in data}
+
+    data_types = sorted(data[0]["old_prob_map"].keys())
+    data_type_idx = data_types.index(data_type)
+
+    probs = []
+    loads = []
+    sims = []
+    steps = sorted(step2data.keys())
+    for step in steps:
+        ins = step2data[step]
+        probs.append(ins["old_prob_map"][data_type])
+        loads.append(ins["name2load"][data_type])
+        sims.append(ins["sim"][data_type_idx])
+
+    # probs
+    fig = plt.figure()
+    ax = fig.add_subplot(111)
+    ax.plot(steps, probs)
+    ax.set_title(f"Sampling Probability of {data_type}")
+    ax.set_xlabel("step")
+    fig.savefig(f"{output_dir}/prob-{data_type}.png")
+
+    # loads
+    def cv_square(data):
+        return np.var(data, axis=1) / (np.mean(data, axis=1)**2 + 1e-10)
+
+    fig = plt.figure()
+    ax = fig.add_subplot(111)
+    ax.plot(steps, cv_square(loads))
+    ax.set_title(f"cv(load)^2 of {data_type}")
+    ax.set_xlabel("step")
+    fig.savefig(f"{output_dir}/load_cv-{data_type}.png")
+
+    # sims
+    fig = plt.figure()
+    ax = fig.add_subplot(111)
+    ax.plot(steps, np.mean(sims, axis=1))
+    ax.set_title(f"Mean Similarities with {data_type}")
+    ax.set_xlabel("step")
+    fig.savefig(f"{output_dir}/sim-{data_type}.png")
+
+
+def test_sampling_convergence():
+    from collections import defaultdict
+    from src.callbacks import AdaptiveSamplingCallback
+
+    # freeze gate
+    name2load = {"code": [0.1359794776119403, 0.1333115671641791, 0.12858208955223882, 0.10330223880597016, 0.12544776119402984, 0.12625932835820897, 0.12761194029850748, 0.11950559701492537], "orca": [0.1509941502743006, 0.11721425756978752, 0.1232988815809414, 0.12714439426545024, 0.11256554420634679, 0.14008274482465977, 0.11819552632376563, 0.11050450095474797], "math": [0.15956486572028086, 0.10727138452881943, 0.11506675888262392, 0.10958069091633744, 0.11805010139847842, 0.11915200393871546, 0.13648938539627462, 0.13482480921846976], "sharegpt": [0.15337086599959998, 0.11428233411553493, 0.12873151621889287, 0.1177436980734424, 0.11538123789498336, 0.13793986642403783, 0.12419686111124664, 0.10835362016226212]}  # fmt: skip
+    # # dynamic
+    # name2load = {"code": [0.14031716417910448, 0.1310634328358209, 0.12651119402985075, 0.10993470149253731, 0.12196828358208955, 0.12552238805970148, 0.12791977611940297, 0.11676305970149255], "orca": [0.15106234655836084, 0.11803640166095838, 0.12349968175067437, 0.12884551268450883, 0.11344072985178673, 0.1383778377231534, 0.11733170672566907, 0.1094057830448883], "math": [0.16001617686708006, 0.10756444371505268, 0.11391210568886491, 0.114803005615014, 0.11676650216277679, 0.1177863481308685, 0.13630182751708533, 0.13284959030325763], "sharegpt": [0.15440024978412215, 0.113654214863131, 0.12914741653941664, 0.12104040941178769, 0.11470799162832905, 0.13593110446537907, 0.12316259873058931, 0.10795601457724527]}  # fmt: skip
+    names = sorted(name2load.keys())
+    callback = AdaptiveSamplingCallback()
+    callback.prob_map = {"code": 0.25, "math": 0.25, "orca": 0.25, "sharegpt": 0.25}
+    name2probs = defaultdict(list)
+    for _ in range(100):
+        for name in names:
+            name2probs[name].append(callback.prob_map[name])
+        new_name2prob, _ = callback._update_prob_map(name2load)
+        callback.prob_map = new_name2prob
+    print(f"final prob_map: {callback.prob_map}")
+
+    fig = plt.figure()
+    ax = fig.add_subplot(111)
+    for name in names:
+        ax.plot(name2probs[name], label=name)
+    ax.legend()
+    ax.set_title("Sampling Probability")
+    ax.set_xlabel("step")
+    fig.savefig("results/sampling_convergence.png")
+
+
 if __name__ == "__main__":
     # gate_load_stats(
     #     "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new",
@@ -195,12 +275,12 @@ if __name__ == "__main__":
     #     "results/gate_load_vis_llama_moe_2_8_orca_4clusters",
     # )
 
-    gate_load_stats(
-        "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new",
-        "data/four_types_mix/dev",
-        "results/debug",
-        update_strategy="l2",
-    )
+    # gate_load_stats(
+    #     "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new",
+    #     "data/four_types_mix/dev",
+    #     "results/debug",
+    #     update_strategy="l2",
+    # )
 
     # gate_load_stats(
     #     "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new",
@@ -227,3 +307,29 @@ if __name__ == "__main__":
     #     "results/gate_load_vis_llama_moe_2_8_four_types_mix_l2",
     #     update_strategy="l2"
     # )
+
+    # sampling_info_stats(
+    #     "/mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad_freeze_gate/moe_sft-2491632/sampling_info/data.jsonl",
+    #     "code",
+    #     "results/sampling_info/llama_moe_four_mix_wo_pad_freeze_gate/code",
+    # )
+
+    # sampling_info_stats(
+    #     "/mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad/moe_sft-2491633/sampling_info/data.jsonl",
+    #     "code",
+    #     "results/sampling_info/llama_moe_four_mix_wo_pad/code",
+    # )
+
+    # sampling_info_stats(
+    #     "/mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad_freeze_gate_wo_gate_noise/moe_sft-2493315/sampling_info/data.jsonl",
+    #     "code",
+    #     "results/sampling_info/llama_moe_four_mix_wo_pad_freeze_gate_wo_gate_noise/code",
+    # )
+
+    # sampling_info_stats(
+    #     "outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad_wo_gate_noise/moe_sft-2492650/sampling_info/data.jsonl",
+    #     "code",
+    #     "results/sampling_info/llama_moe_four_mix_wo_pad_wo_gate_noise/code",
+    # )
+
+    test_sampling_convergence()