File size: 36,036 Bytes
b386a77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 |
diff --git a/.gitignore b/.gitignore
index c243024..8c28ce3 100644
--- a/.gitignore
+++ b/.gitignore
@@ -175,6 +175,7 @@ debug.py
wandb/
nohup.out
lm-evaluation-harness/
+bigcode-evaluation-harness/
results/**/*.json
results/**/*.jsonl
results/**/*.db
diff --git a/README.md b/README.md
index 8813a32..b276a78 100644
--- a/README.md
+++ b/README.md
@@ -26,6 +26,11 @@ bash scripts/data.sh
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
cd lm-evaluation-harness
pip install -e .
+# commit: 9cfa52b
+git clone https://github.com/bigcode-project/bigcode-evaluation-harness.git
+cd bigcode-evaluation-harness
+# change `pyext==0.5` in `bigcode-evaluation-harness/requirements.txt`, ref: https://github.com/bigcode-project/bigcode-evaluation-harness/pull/181
+pip install -e .
```
## 📃 TODO
diff --git a/scripts/eval.sh b/scripts/eval.sh
deleted file mode 100644
index 4f41b37..0000000
--- a/scripts/eval.sh
+++ /dev/null
@@ -1,96 +0,0 @@
-# nohup srun -p MoE --gres gpu:1 bash scripts/eval.sh all /mnt/petrelfs/share_data/quxiaoye/models/Sheared-LLaMA-2.7B True results/Sheared-LLaMA-2.7B 1>logs/eval-all-Sheared-LLaMA-2.7B.log 2>&1 &
-
-mmlu() {
- # MMLU: https://github.com/princeton-nlp/LLM-Shearing/blob/20ebd2645a8ff5fa65874e1347f9891b80e01805/icl_eval/run_eval.sh#L18
- MODEL=$1
- TRUST_REMOTE_CODE=$2
- RESULT_DIR=$3
- mkdir -p $RESULT_DIR
-
- lm_eval \
- --model hf \
- --model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
- --tasks mmlu_computer_security,mmlu_high_school_chemistry,mmlu_philosophy,mmlu_elementary_mathematics,mmlu_prehistory,mmlu_formal_logic,mmlu_high_school_mathematics,mmlu_econometrics,mmlu_moral_scenarios,mmlu_college_mathematics,mmlu_high_school_government_and_politics,mmlu_us_foreign_policy,mmlu_high_school_world_history,mmlu_conceptual_physics,mmlu_college_medicine,mmlu_international_law,mmlu_abstract_algebra,mmlu_logical_fallacies,mmlu_machine_learning,mmlu_medical_genetics,mmlu_public_relations,mmlu_college_biology,mmlu_marketing,mmlu_electrical_engineering,mmlu_anatomy,mmlu_high_school_us_history,mmlu_high_school_biology,mmlu_miscellaneous,mmlu_high_school_psychology,mmlu_sociology,mmlu_business_ethics,mmlu_high_school_geography,mmlu_human_aging,mmlu_high_school_statistics,mmlu_moral_disputes,mmlu_professional_psychology,mmlu_global_facts,mmlu_college_physics,mmlu_nutrition,mmlu_high_school_macroeconomics,mmlu_world_religions,mmlu_professional_medicine,mmlu_high_school_computer_science,mmlu_college_chemistry,mmlu_human_sexuality,mmlu_high_school_microeconomics,mmlu_astronomy,mmlu_professional_accounting,mmlu_high_school_european_history,mmlu_jurisprudence,mmlu_professional_law,mmlu_high_school_physics,mmlu_virology,mmlu_management,mmlu_college_computer_science,mmlu_clinical_knowledge,mmlu_security_studies \
- --num_fewshot 5 \
- --device cuda:0 \
- --batch_size auto \
- --verbosity DEBUG \
- --output_path $RESULT_DIR/mmlu.json
-}
-
-bbh() {
- # Big Bench Hard (BBH): https://arxiv.org/pdf/2210.09261.pdf
- MODEL=$1
- TRUST_REMOTE_CODE=$2
- RESULT_DIR=$3
- mkdir -p $RESULT_DIR
-
- lm_eval \
- --log_samples \
- --model hf \
- --model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
- --tasks bbh_fewshot_boolean_expressions,bbh_fewshot_causal_judgement,bbh_fewshot_date_understanding,bbh_fewshot_disambiguation_qa,bbh_fewshot_dyck_languages,bbh_fewshot_formal_fallacies,bbh_fewshot_geometric_shapes,bbh_fewshot_hyperbaton,bbh_fewshot_logical_deduction_five_objects,bbh_fewshot_logical_deduction_seven_objects,bbh_fewshot_logical_deduction_three_objects,bbh_fewshot_movie_recommendation,bbh_fewshot_multistep_arithmetic_two,bbh_fewshot_navigate,bbh_fewshot_object_counting,bbh_fewshot_penguins_in_a_table,bbh_fewshot_reasoning_about_colored_objects,bbh_fewshot_ruin_names,bbh_fewshot_salient_translation_error_detection,bbh_fewshot_snarks,bbh_fewshot_sports_understanding,bbh_fewshot_temporal_sequences,bbh_fewshot_tracking_shuffled_objects_five_objects,bbh_fewshot_tracking_shuffled_objects_seven_objects,bbh_fewshot_tracking_shuffled_objects_three_objects,bbh_fewshot_web_of_lies,bbh_fewshot_word_sorting \
- --device cuda:0 \
- --batch_size auto \
- --verbosity DEBUG \
- --output_path $RESULT_DIR/bbh.json
-}
-
-reasoning() {
- MODEL=$1
- TRUST_REMOTE_CODE=$2
- RESULT_DIR=$3
- mkdir -p $RESULT_DIR
-
- lm_eval \
- --log_samples \
- --model hf \
- --model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
- --tasks gsm8k_cot \
- --device cuda:0 \
- --batch_size auto \
- --verbosity DEBUG \
- --output_path $RESULT_DIR/reasoning.json
-}
-
-qa() {
- MODEL=$1
- TRUST_REMOTE_CODE=$2
- RESULT_DIR=$3
- mkdir -p $RESULT_DIR
-
- lm_eval \
- --log_samples \
- --model hf \
- --model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
- --tasks arc_easy,arc_challenge,boolq \
- --num_fewshot 0 \
- --device cuda:0 \
- --batch_size auto \
- --verbosity DEBUG \
- --output_path $RESULT_DIR/qa.json
-}
-
-EVAL_TASK=$1
-shift 1
-start=$(date +%s)
-case $EVAL_TASK in
- mmlu)
- mmlu $* ;;
- bbh)
- bbh $* ;;
- reasoning)
- reasoning $* ;;
- qa)
- qa $* ;;
- all)
- mmlu $*
- bbh $*
- reasoning $*
- qa $*
- ;;
- *)
- echo "$EVAL_TASK not recognized!";;
-esac
-end=$(date +%s)
-echo "Elapsed Time: $(($end-$start)) seconds"
diff --git a/scripts/four_mix/freeze_gate.sh b/scripts/four_mix/freeze_gate.sh
index d94d78c..70afb8e 100644
--- a/scripts/four_mix/freeze_gate.sh
+++ b/scripts/four_mix/freeze_gate.sh
@@ -83,8 +83,11 @@ num_gpus=4
python -m src.eval.gen_mt_ans \
--model-path $output_dir \
- --model-id $task_name \
- --num-gpus-total $num_gpus
+ --model-id $task_name
+
+ python -m src.eval.gen_alpaca_eval_ans \
+ --model-path $output_dir \
+ --model-id $task_name
}
# nohup srun -p MoE --ntasks-per-node=1 --cpus-per-task=16 --mem=128G --nodes=1 --gres=gpu:4 bash "/mnt/petrelfs/zhutong/adaptive-sft-for-moe/scripts/one_data_steps_dynamic.sh" "llama_moe_orca_epochs_cluster_4" "auto" "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new" "data/open_orca_clustered/4" "data/open_orca_clustered_eval/4" 1>logs/llama_moe_orca_cluster_4_dynamic.log 2>&1 &
diff --git a/scripts/gen_mt_bench_ans.sh b/scripts/gen_mt_bench_ans.sh
deleted file mode 100644
index f251644..0000000
--- a/scripts/gen_mt_bench_ans.sh
+++ /dev/null
@@ -1,32 +0,0 @@
-#!/usr/bin/bash
-
-#SBATCH --job-name=moe_gen
-#SBATCH --output=logs/%x-%j.log
-#SBATCH --error=logs/%x-%j.log
-
-#SBATCH --partition=MoE
-#SBATCH --ntasks-per-node=1
-#SBATCH --cpus-per-task=16
-#SBATCH --mem=64G
-
-#SBATCH --nodes=1
-#SBATCH --gres=gpu:1
-#SBATCH --quotatype=auto
-
-{
- # python -m fastchat.llm_judge.gen_model_answer \
- # --model-path outputs/sheared_llama_sharegpt/moe_sft-2411306 \
- # --model-id sheared_llama_sharegpt
-
- # python -m fastchat.llm_judge.gen_model_answer \
- # --model-path outputs/sheared_llama_uniform_mix/moe_sft-2421072 \
- # --model-id sheared_llama_uniform_mix
-
- bash scripts/cp_model_files.sh outputs/llama_moe/moe_sft-2409782
- python -m fastchat.llm_judge.gen_model_answer \
- --model-path outputs/llama_moe/moe_sft-2409782 \
- --model-id llama_moe_uniform_mix
-}
-
-# nohup srun -p MoE -n1 -N1 --gres=gpu:1 --quotatype spot python -m fastchat.llm_judge.gen_model_answer --model-path outputs/sheared_llama_sharegpt/moe_sft-2411306 --model-id sheared_llama_sharegpt 1>logs/mt_bench_gen_sheared_llama_sharegpt.log 2>&1 &
-# nohup srun -p MoE -n1 -N1 --gres=gpu:1 --quotatype spot python -m fastchat.llm_judge.gen_model_answer --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/llama_moe_sharegpt/moe_sft-2411309 --model-id llama_moe_sharegpt 1>logs/mt_bench_gen_llama_moe_sharegpt.log 2>&1 &
diff --git a/scripts/multi.sh b/scripts/multi.sh
index bcd83b8..e399761 100644
--- a/scripts/multi.sh
+++ b/scripts/multi.sh
@@ -100,5 +100,8 @@ nohup srun -p MoE --ntasks-per-node=1 --cpus-per-task=16 --mem=128G --nodes=1 --
nohup srun -p MoE --gres gpu:1 python -m src.eval.gen_mt_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/llama_moe_four_mix_uniform/bash-2485396 --model-id llama_moe_four_mix_uniform 1>logs/gen_mt_ans-llama_moe_four_mix_uniform.log 2>&1 &
nohup srun -p MoE --gres gpu:1 python -m src.eval.gen_mt_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/sheared_four_mix_uniform/bash-2485397 --model-id sheared_four_mix_uniform 1>logs/gen_mt_ans-sheared_four_mix_uniform.log 2>&1 &
-nohup srun -p MoE --gres gpu:1 python -m src.eval.get_alpaca_eval_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/llama_moe_four_mix_uniform/bash-2485396 --model-id llama_moe_four_mix_uniform 1>logs/gen_alpaca_eval-llama_moe_four_mix_uniform.log 2>&1 &
-nohup srun -p MoE --gres gpu:1 python -m src.eval.get_alpaca_eval_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/sheared_four_mix_uniform/bash-2485397 --model-id sheared_four_mix_uniform 1>logs/gen_alpaca_eval-sheared_four_mix_uniform.log 2>&1 &
+nohup srun -p MoE --gres gpu:1 python -m src.eval.gen_alpaca_eval_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/llama_moe_four_mix_uniform/bash-2485396 --model-id llama_moe_four_mix_uniform 1>logs/gen_alpaca_eval-llama_moe_four_mix_uniform.log 2>&1 &
+nohup srun -p MoE --gres gpu:1 python -m src.eval.gen_alpaca_eval_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/sheared_four_mix_uniform/bash-2485397 --model-id sheared_four_mix_uniform 1>logs/gen_alpaca_eval-sheared_four_mix_uniform.log 2>&1 &
+
+nohup srun -p MoE --gres gpu:1 bash scripts/eval/eval.sh reasoning /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad_wo_gate_noise/moe_sft-2492650 True results/llama_moe_four_mix_wo_pad_wo_gate_noise 1>logs/eval-reasoning-llama_moe_four_mix_wo_pad_wo_gate_noise.log 2>&1 &
+nohup srun -p MoE --gres gpu:1 bash scripts/eval/eval.sh reasoning /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad/moe_sft-2491633 True results/llama_moe_four_mix_wo_pad 1>logs/eval-reasoning-llama_moe_four_mix_wo_pad.log 2>&1 &
diff --git a/src/callbacks.py b/src/callbacks.py
index a750f69..e9d0c04 100644
--- a/src/callbacks.py
+++ b/src/callbacks.py
@@ -6,6 +6,7 @@ import torch
import numpy as np
from loguru import logger
from transformers.trainer_callback import TrainerCallback, TrainerState, TrainerControl
+from transformers.utils import is_flash_attn_2_available
from src.utils.config import TrainingArguments
from src.utils.io import append_jsonlines
@@ -22,6 +23,7 @@ class AdaptiveSamplingCallback(TrainerCallback):
criterion: Optional[Literal["min", "max", "mean"]] = "mean",
sim_type: Optional[Literal["cos", "l2"]] = "cos",
):
+ assert is_flash_attn_2_available(), "Make sure you have flash-attn installed"
self.criterion = criterion
self.sim_type = sim_type
self.prob_map = {}
@@ -74,8 +76,8 @@ class AdaptiveSamplingCallback(TrainerCallback):
cls,
ori_weights: np.ndarray,
delta: np.ndarray,
- eta: float = 1.0,
- c: float = 1e-4,
+ eta: float = 10.0,
+ c: float = 5e-2,
) -> np.ndarray:
def _softmax(vec: np.ndarray) -> np.ndarray:
exps = np.exp(vec - np.max(vec))
diff --git a/src/core/train.py b/src/core/train.py
index 2be5558..9b1f694 100644
--- a/src/core/train.py
+++ b/src/core/train.py
@@ -7,13 +7,12 @@ from loguru import logger
from src.utils.config import ModelArguments, DataArguments, TrainingArguments
from src.data import (
SubDirWeightedPackedJsonlDataset,
- get_uniform_sampling_ratio,
fault_tolerance_data_collator,
CachedJsonlDataset,
get_cached_datasets_from_dir,
)
from src.utils.io import trainer_save_model_safe
-from src.models import LlamaMoEForCausalLM, LlamaMoEConfig
+from src.models import LlamaMoEForCausalLM, LlamaMoEConfig, DeepseekConfig, DeepseekForCausalLM
from src.trainer import GateLoadRecordingTrainer
from src.callbacks import AdaptiveSamplingCallback
@@ -36,6 +35,9 @@ def get_model_and_tokenizer(
elif model_type == "llama_moe":
ConfigClass = LlamaMoEConfig
ModelClass = LlamaMoEForCausalLM
+ elif model_type == "deepseek":
+ ConfigClass = DeepseekConfig
+ ModelClass = DeepseekForCausalLM
else:
raise ValueError(f"Unknown model type: {model_type}")
@@ -54,6 +56,21 @@ def get_model_and_tokenizer(
config.update(additional_config)
logger.info("Config ready")
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
+ model_name_or_path,
+ cache_dir=cache_dir,
+ model_max_length=model_max_length,
+ padding_side=padding_side,
+ use_fast=False,
+ trust_remote_code=trust_remote_code,
+ )
+ if tokenizer.pad_token is None:
+ if tokenizer.unk_token is not None:
+ tokenizer.pad_token = tokenizer.unk_token
+ else:
+ tokenizer.pad_token = tokenizer.eos_token
+ logger.info(f"tokenizer ready, pad_token: {tokenizer.pad_token}")
+
# Load model and tokenizer
model = ModelClass.from_pretrained(
model_name_or_path,
@@ -65,18 +82,6 @@ def get_model_and_tokenizer(
)
logger.info("model ready")
- tokenizer = transformers.AutoTokenizer.from_pretrained(
- model_name_or_path,
- cache_dir=cache_dir,
- model_max_length=model_max_length,
- padding_side=padding_side,
- use_fast=False,
- trust_remote_code=trust_remote_code,
- )
- if tokenizer.pad_token != tokenizer.unk_token:
- tokenizer.pad_token = tokenizer.unk_token
- logger.info("tokenizer ready")
-
return model, tokenizer
@@ -117,7 +122,9 @@ def train():
train_dataset = SubDirWeightedPackedJsonlDataset(
data_args.dataset_dir_or_path,
tokenizer,
- prob_map=get_uniform_sampling_ratio(data_args.dataset_dir_or_path),
+ # prob_map=get_uniform_sampling_ratio(data_args.dataset_dir_or_path),
+ # prob_map={"code": 0.25119094959816823, "math": 0.2674581878910902, "orca": 0.243050776175138, "sharegpt": 0.23830008633560357},
+ prob_map=data_args.prob_map,
seed=training_args.seed,
)
elif datapath.is_file():
diff --git a/src/data.py b/src/data.py
index d783a21..a1a8ff7 100644
--- a/src/data.py
+++ b/src/data.py
@@ -20,6 +20,7 @@ def preprocess(
instances,
tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
+ tokenizer_legacy = getattr(tokenizer, "legacy", None)
conv = Conversation()
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
@@ -72,7 +73,7 @@ def preprocess(
# "-2" is hardcoded for the Llama tokenizer to make the offset correct.
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
- if i != 0 and not tokenizer.legacy:
+ if i != 0 and not tokenizer_legacy:
# The legacy and non-legacy modes handle special tokens differently
instruction_len -= 1
@@ -80,7 +81,7 @@ def preprocess(
target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID
cur_len += turn_len
- if i != 0 and not tokenizer.legacy:
+ if i != 0 and not tokenizer_legacy:
# The legacy and non-legacy modes handle special tokens differently
cur_len -= 1
diff --git a/src/eval/get_alpaca_eval_ans.py b/src/eval/get_alpaca_eval_ans.py
deleted file mode 100644
index 1ff3e5e..0000000
--- a/src/eval/get_alpaca_eval_ans.py
+++ /dev/null
@@ -1,113 +0,0 @@
-import argparse
-from pathlib import Path
-
-import torch
-import datasets
-from tqdm import tqdm
-
-from src.core.train import get_model_and_tokenizer
-from src.utils.conversation import Conversation
-from src.utils.io import dump_json
-
-
[email protected]_mode()
-def run_eval(model_path, model_id, max_new_tokens):
- model, tokenizer = get_model_and_tokenizer(
- "auto",
- model_path,
- torch_dtype=torch.bfloat16,
- trust_remote_code=True,
- )
- model.cuda()
- model.eval()
-
- conv = Conversation()
- outputs = []
- eval_set = datasets.load_dataset("tatsu-lab/alpaca_eval", "alpaca_eval")["eval"]
- for example in tqdm(eval_set, desc="Eval"):
- conv.append_message(conv.roles[0], example["instruction"])
- conv.append_message(conv.roles[1], None)
- prompt = conv.get_prompt()
- input_ids = tokenizer([prompt], return_tensors="pt").input_ids
- conv.clear_msg()
- # generate here is a placeholder for your models generations
- output_ids = model.generate(
- input_ids.cuda(),
- do_sample=False,
- temperature=0.0,
- max_new_tokens=max_new_tokens,
- )
- if model.config.is_encoder_decoder:
- output_ids = output_ids[0]
- else:
- output_ids = output_ids[0][len(input_ids[0]) :] # noqa: E203
- # be consistent with the template's stop_token_ids
- if conv.stop_token_ids:
- stop_token_ids_index = [
- i
- for i, id in enumerate(output_ids)
- if id in conv.stop_token_ids
- ]
- if len(stop_token_ids_index) > 0:
- output_ids = output_ids[: stop_token_ids_index[0]]
-
- output = tokenizer.decode(
- output_ids,
- spaces_between_special_tokens=False,
- )
- if conv.stop_str and isinstance(conv.stop_str, list):
- stop_str_indices = sorted(
- [
- output.find(stop_str)
- for stop_str in conv.stop_str
- if output.find(stop_str) > 0
- ]
- )
- if len(stop_str_indices) > 0:
- output = output[: stop_str_indices[0]]
- elif conv.stop_str and output.find(conv.stop_str) > 0:
- output = output[: output.find(conv.stop_str)]
-
- for special_token in tokenizer.special_tokens_map.values():
- if isinstance(special_token, list):
- for special_tok in special_token:
- output = output.replace(special_tok, "")
- else:
- output = output.replace(special_token, "")
- output = output.strip()
-
- if conv.name == "xgen" and output.startswith("Assistant:"):
- output = output.replace("Assistant:", "", 1).strip()
-
- example["output"] = output
- outputs.append(example)
-
- outpath = Path("results/alpaca_eval") / f"{model_id}.json"
- dump_json(outputs, outpath, indent=2)
-
-
-if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--model-path",
- type=str,
- required=True,
- help="The path to the weights. This can be a local folder or a Hugging Face repo ID.",
- )
- parser.add_argument(
- "--model-id", type=str, required=True, help="A custom name for the model."
- )
- parser.add_argument(
- "--max-new-token",
- type=int,
- default=1024,
- help="The maximum number of new generated tokens.",
- )
-
- args = parser.parse_args()
-
- run_eval(
- model_path=args.model_path,
- model_id=args.model_id,
- max_new_tokens=args.max_new_token,
- )
diff --git a/src/eval/show.py b/src/eval/show.py
index d500054..ea0c210 100644
--- a/src/eval/show.py
+++ b/src/eval/show.py
@@ -55,13 +55,13 @@ def collect_results(result_dir: str, verbose: bool = True) -> dict:
avg = sum(vals) / len(vals)
tot_vals.append(avg)
if verbose:
- logger.info(f"task: {name}, num: {len(tasks.split(','))}, avg: {avg:.3%}")
+ logger.info(f"task: {name}, num: {len(tasks.split(','))}, avg: {100 * avg:.3f} %")
if len(tot_vals) == 0:
tot_avg = 0.0
else:
tot_avg = sum(tot_vals) / len(tot_vals)
- logger.info(f"total avg: {tot_avg:.3%}")
+ logger.info(f"total avg: {100 * tot_avg:.3f} %")
if __name__ == "__main__":
diff --git a/src/models/deepseek/modeling_deepseek.py b/src/models/deepseek/modeling_deepseek.py
index 1dae56e..20498b2 100644
--- a/src/models/deepseek/modeling_deepseek.py
+++ b/src/models/deepseek/modeling_deepseek.py
@@ -20,6 +20,7 @@
""" PyTorch DeepSeek model."""
import math
import warnings
+from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
@@ -297,7 +298,7 @@ class DeepseekMLP(nn.Module):
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
- def forward(self, x):
+ def forward(self, x, **kwargs):
if self.config.pretraining_tp > 1:
slice = self.intermediate_size // self.config.pretraining_tp
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
@@ -328,7 +329,9 @@ class DeepseekMLP(nn.Module):
else:
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
- return down_proj
+ bsz, seq_len, _ = x.shape
+ load = torch.zeros(bsz * seq_len, self.config.n_routed_experts)
+ return down_proj, load
class MoEGate(nn.Module):
@@ -356,7 +359,10 @@ class MoEGate(nn.Module):
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, hidden_states):
- bsz, seq_len, h = hidden_states.shape
+ if len(hidden_states.shape) == 2:
+ bsz, h = hidden_states.shape
+ else:
+ bsz, seq_len, h = hidden_states.shape
### compute gating score
hidden_states = hidden_states.view(-1, h)
logits = F.linear(hidden_states, self.weight, None)
@@ -404,7 +410,10 @@ class MoEGate(nn.Module):
aux_loss = (Pi * fi).sum() * self.alpha
else:
aux_loss = None
- return topk_idx, topk_weight, aux_loss
+ _zeros = torch.zeros_like(logits)
+ _scores_filtered = _zeros.scatter(dim=1, index=topk_idx, src=topk_weight)
+ load = (_scores_filtered > 0).sum(0)
+ return topk_idx, topk_weight, aux_loss, load
class AddAuxiliaryLoss(torch.autograd.Function):
@@ -450,10 +459,19 @@ class DeepseekMoE(nn.Module):
config=config, intermediate_size=intermediate_size
)
- def forward(self, hidden_states):
+ def forward(self, hidden_states, attention_mask=None):
+ bsz, seq_len, hsz = hidden_states.shape
+ hidden_states = hidden_states.reshape(-1, hsz)
+ flattened_mask = None
+ flattened_shape = None
+ if attention_mask is not None and len(attention_mask.shape) == 2:
+ flattened_mask = attention_mask.flatten()
+ flattened_shape = flattened_mask.shape
+ hidden_states = hidden_states[flattened_mask.bool()]
+
identity = hidden_states
orig_shape = hidden_states.shape
- topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
+ topk_idx, topk_weight, aux_loss, load = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
flat_topk_idx = topk_idx.view(-1)
if self.training:
@@ -472,7 +490,15 @@ class DeepseekMoE(nn.Module):
).view(*orig_shape)
if self.config.n_shared_experts is not None:
y = y + self.shared_experts(identity)
- return y
+
+ if flattened_mask is not None:
+ _y = torch.zeros(flattened_shape + (hsz,), dtype=y.dtype, device=y.device)
+ _y[flattened_mask.bool()] = y
+ y = _y
+
+ y = y.reshape(bsz, seq_len, hsz)
+
+ return y, load
@torch.no_grad()
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
@@ -1163,7 +1189,7 @@ class DeepseekDecoderLayer(nn.Module):
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
- hidden_states = self.mlp(hidden_states)
+ hidden_states, load = self.mlp(hidden_states, attention_mask=attention_mask)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
@@ -1174,6 +1200,8 @@ class DeepseekDecoderLayer(nn.Module):
if use_cache:
outputs += (present_key_value,)
+ outputs += (load,)
+
return outputs
@@ -1220,6 +1248,11 @@ class DeepseekPreTrainedModel(PreTrainedModel):
module.weight.data[module.padding_idx].zero_()
+@dataclass
+class BaseMoEModelOutputWithPast(BaseModelOutputWithPast):
+ gate_load: Optional[torch.Tensor] = None
+
+
Deepseek_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
@@ -1429,6 +1462,7 @@ class DeepseekModel(DeepseekPreTrainedModel):
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
+ gate_load = ()
next_decoder_cache = None
for decoder_layer in self.layers:
@@ -1463,6 +1497,8 @@ class DeepseekModel(DeepseekPreTrainedModel):
if output_attentions:
all_self_attns += (layer_outputs[1],)
+ gate_load += (layer_outputs[-1],)
+
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
@@ -1482,14 +1518,20 @@ class DeepseekModel(DeepseekPreTrainedModel):
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
- return BaseModelOutputWithPast(
+ return BaseMoEModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
+ gate_load=gate_load,
)
+@dataclass
+class MoECausalLMOutputWithPast(CausalLMOutputWithPast):
+ gate_load: Optional[torch.Tensor] = None
+
+
class DeepseekForCausalLM(DeepseekPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
@@ -1620,12 +1662,13 @@ class DeepseekForCausalLM(DeepseekPreTrainedModel):
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
- return CausalLMOutputWithPast(
+ return MoECausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
+ gate_load=outputs.gate_load,
)
def prepare_inputs_for_generation(
diff --git a/src/utils/config.py b/src/utils/config.py
index 3ea5283..d4060d9 100644
--- a/src/utils/config.py
+++ b/src/utils/config.py
@@ -6,6 +6,7 @@ import torch
import transformers
from src.utils.io import load_json
+from src.data import get_uniform_sampling_ratio
@dataclass
@@ -33,7 +34,9 @@ class ModelArguments:
)
attn_impl: str = field(
default="flash_attention_2",
- metadata={"help": "attention implementation, choice from [eager, flash_attention_2, sdpa] (default: `flash_attention_2`)"}
+ metadata={
+ "help": "attention implementation, choice from [eager, flash_attention_2, sdpa] (default: `flash_attention_2`)"
+ },
)
def __post_init__(self):
@@ -56,6 +59,18 @@ class DataArguments:
default="data/merged",
metadata={"help": "Path to dataset directory or a single jsonl file"},
)
+ prob_map: str = field(
+ default=None,
+ metadata={"help": "Path to the probability map file"},
+ )
+
+ def __post_init__(self):
+ if self.prob_map is not None:
+ if not pathlib.Path(self.prob_map).exists():
+ raise ValueError(f"Probability map file {self.prob_map} not found")
+ self.prob_map = load_json(self.prob_map)
+ else:
+ self.prob_map = get_uniform_sampling_ratio(self.dataset_dir_or_path)
@dataclass
@@ -70,9 +85,7 @@ class TrainingArguments(transformers.TrainingArguments):
)
max_eval_steps_per_type: int = field(
default=10,
- metadata={
- "help": "Maximum number of steps to perform during evaluation."
- },
+ metadata={"help": "Maximum number of steps to perform during evaluation."},
)
dynamic_sampling_sim_type: Literal["cos", "l2"] = field(
default="l2",
@@ -88,7 +101,5 @@ class TrainingArguments(transformers.TrainingArguments):
)
freeze_gate: bool = field(
default=False,
- metadata={
- "help": "Whether to freeze the gate during training."
- },
+ metadata={"help": "Whether to freeze the gate during training."},
)
diff --git a/src/utils/visualization.py b/src/utils/visualization.py
index 794f6c8..02bd236 100644
--- a/src/utils/visualization.py
+++ b/src/utils/visualization.py
@@ -180,6 +180,86 @@ def gate_load_stats(model_dir, data_dir, result_dir, update_strategy: str = "cos
)
+def sampling_info_stats(filepath: str, data_type: str, output_dir: str):
+ from pathlib import Path
+ import numpy as np
+ from src.utils.io import load_jsonlines
+
+ Path(output_dir).mkdir(exist_ok=True, parents=True)
+
+ data = load_jsonlines(filepath)
+ step2data = {ins["step"]: ins for ins in data}
+
+ data_types = sorted(data[0]["old_prob_map"].keys())
+ data_type_idx = data_types.index(data_type)
+
+ probs = []
+ loads = []
+ sims = []
+ steps = sorted(step2data.keys())
+ for step in steps:
+ ins = step2data[step]
+ probs.append(ins["old_prob_map"][data_type])
+ loads.append(ins["name2load"][data_type])
+ sims.append(ins["sim"][data_type_idx])
+
+ # probs
+ fig = plt.figure()
+ ax = fig.add_subplot(111)
+ ax.plot(steps, probs)
+ ax.set_title(f"Sampling Probability of {data_type}")
+ ax.set_xlabel("step")
+ fig.savefig(f"{output_dir}/prob-{data_type}.png")
+
+ # loads
+ def cv_square(data):
+ return np.var(data, axis=1) / (np.mean(data, axis=1)**2 + 1e-10)
+
+ fig = plt.figure()
+ ax = fig.add_subplot(111)
+ ax.plot(steps, cv_square(loads))
+ ax.set_title(f"cv(load)^2 of {data_type}")
+ ax.set_xlabel("step")
+ fig.savefig(f"{output_dir}/load_cv-{data_type}.png")
+
+ # sims
+ fig = plt.figure()
+ ax = fig.add_subplot(111)
+ ax.plot(steps, np.mean(sims, axis=1))
+ ax.set_title(f"Mean Similarities with {data_type}")
+ ax.set_xlabel("step")
+ fig.savefig(f"{output_dir}/sim-{data_type}.png")
+
+
+def test_sampling_convergence():
+ from collections import defaultdict
+ from src.callbacks import AdaptiveSamplingCallback
+
+ # freeze gate
+ name2load = {"code": [0.1359794776119403, 0.1333115671641791, 0.12858208955223882, 0.10330223880597016, 0.12544776119402984, 0.12625932835820897, 0.12761194029850748, 0.11950559701492537], "orca": [0.1509941502743006, 0.11721425756978752, 0.1232988815809414, 0.12714439426545024, 0.11256554420634679, 0.14008274482465977, 0.11819552632376563, 0.11050450095474797], "math": [0.15956486572028086, 0.10727138452881943, 0.11506675888262392, 0.10958069091633744, 0.11805010139847842, 0.11915200393871546, 0.13648938539627462, 0.13482480921846976], "sharegpt": [0.15337086599959998, 0.11428233411553493, 0.12873151621889287, 0.1177436980734424, 0.11538123789498336, 0.13793986642403783, 0.12419686111124664, 0.10835362016226212]} # fmt: skip
+ # # dynamic
+ # name2load = {"code": [0.14031716417910448, 0.1310634328358209, 0.12651119402985075, 0.10993470149253731, 0.12196828358208955, 0.12552238805970148, 0.12791977611940297, 0.11676305970149255], "orca": [0.15106234655836084, 0.11803640166095838, 0.12349968175067437, 0.12884551268450883, 0.11344072985178673, 0.1383778377231534, 0.11733170672566907, 0.1094057830448883], "math": [0.16001617686708006, 0.10756444371505268, 0.11391210568886491, 0.114803005615014, 0.11676650216277679, 0.1177863481308685, 0.13630182751708533, 0.13284959030325763], "sharegpt": [0.15440024978412215, 0.113654214863131, 0.12914741653941664, 0.12104040941178769, 0.11470799162832905, 0.13593110446537907, 0.12316259873058931, 0.10795601457724527]} # fmt: skip
+ names = sorted(name2load.keys())
+ callback = AdaptiveSamplingCallback()
+ callback.prob_map = {"code": 0.25, "math": 0.25, "orca": 0.25, "sharegpt": 0.25}
+ name2probs = defaultdict(list)
+ for _ in range(100):
+ for name in names:
+ name2probs[name].append(callback.prob_map[name])
+ new_name2prob, _ = callback._update_prob_map(name2load)
+ callback.prob_map = new_name2prob
+ print(f"final prob_map: {callback.prob_map}")
+
+ fig = plt.figure()
+ ax = fig.add_subplot(111)
+ for name in names:
+ ax.plot(name2probs[name], label=name)
+ ax.legend()
+ ax.set_title("Sampling Probability")
+ ax.set_xlabel("step")
+ fig.savefig("results/sampling_convergence.png")
+
+
if __name__ == "__main__":
# gate_load_stats(
# "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new",
@@ -195,12 +275,12 @@ if __name__ == "__main__":
# "results/gate_load_vis_llama_moe_2_8_orca_4clusters",
# )
- gate_load_stats(
- "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new",
- "data/four_types_mix/dev",
- "results/debug",
- update_strategy="l2",
- )
+ # gate_load_stats(
+ # "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new",
+ # "data/four_types_mix/dev",
+ # "results/debug",
+ # update_strategy="l2",
+ # )
# gate_load_stats(
# "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new",
@@ -227,3 +307,29 @@ if __name__ == "__main__":
# "results/gate_load_vis_llama_moe_2_8_four_types_mix_l2",
# update_strategy="l2"
# )
+
+ # sampling_info_stats(
+ # "/mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad_freeze_gate/moe_sft-2491632/sampling_info/data.jsonl",
+ # "code",
+ # "results/sampling_info/llama_moe_four_mix_wo_pad_freeze_gate/code",
+ # )
+
+ # sampling_info_stats(
+ # "/mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad/moe_sft-2491633/sampling_info/data.jsonl",
+ # "code",
+ # "results/sampling_info/llama_moe_four_mix_wo_pad/code",
+ # )
+
+ # sampling_info_stats(
+ # "/mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad_freeze_gate_wo_gate_noise/moe_sft-2493315/sampling_info/data.jsonl",
+ # "code",
+ # "results/sampling_info/llama_moe_four_mix_wo_pad_freeze_gate_wo_gate_noise/code",
+ # )
+
+ # sampling_info_stats(
+ # "outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad_wo_gate_noise/moe_sft-2492650/sampling_info/data.jsonl",
+ # "code",
+ # "results/sampling_info/llama_moe_four_mix_wo_pad_wo_gate_noise/code",
+ # )
+
+ test_sampling_convergence()
|