--- tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: ditmodel results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: test split: train args: test metrics: - name: Accuracy type: accuracy value: 0.9523326572008114 --- # ditmodel This model was fintuned on DiT model for document classification on custom dataset. It achieves the following results on the evaluation set: - Loss: 0.1482 - Accuracy: 0.9523 - Weighted f1: 0.9524 - Micro f1: 0.9523 - Macro f1: 0.9505 - Weighted recall: 0.9523 - Micro recall: 0.9523 - Macro recall: 0.9523 - Weighted precision: 0.9544 - Micro precision: 0.9523 - Macro precision: 0.9506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 0.2337 | 1.0 | 78 | 0.2668 | 0.9087 | 0.9098 | 0.9087 | 0.9058 | 0.9087 | 0.9087 | 0.9040 | 0.9229 | 0.9087 | 0.9220 | | 0.1711 | 2.0 | 156 | 0.1820 | 0.9376 | 0.9380 | 0.9376 | 0.9331 | 0.9376 | 0.9376 | 0.9403 | 0.9416 | 0.9376 | 0.9292 | | 0.1297 | 3.0 | 234 | 0.1482 | 0.9523 | 0.9524 | 0.9523 | 0.9505 | 0.9523 | 0.9523 | 0.9523 | 0.9544 | 0.9523 | 0.9506 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.6.1 - Tokenizers 0.15.1