--- tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: ditmodel results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: train split: train args: train metrics: - name: Accuracy type: accuracy value: 0.9425649095200629 --- # ditmodel This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1359 - Accuracy: 0.9426 - Weighted f1: 0.9426 - Micro f1: 0.9426 - Macro f1: 0.9386 - Weighted recall: 0.9426 - Micro recall: 0.9426 - Macro recall: 0.9404 - Weighted precision: 0.9440 - Micro precision: 0.9426 - Macro precision: 0.9382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 0.3093 | 0.98 | 38 | 0.2252 | 0.8891 | 0.8879 | 0.8891 | 0.8820 | 0.8891 | 0.8891 | 0.8738 | 0.8952 | 0.8891 | 0.8994 | | 0.2278 | 1.99 | 77 | 0.1648 | 0.9292 | 0.9292 | 0.9292 | 0.9220 | 0.9292 | 0.9292 | 0.9221 | 0.9310 | 0.9292 | 0.9241 | | 0.2066 | 2.94 | 114 | 0.1359 | 0.9426 | 0.9426 | 0.9426 | 0.9386 | 0.9426 | 0.9426 | 0.9404 | 0.9440 | 0.9426 | 0.9382 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.6.1 - Tokenizers 0.15.1