--- base_model: microsoft/dit-base tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: ditmodel results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: train split: train args: train metrics: - name: Accuracy type: accuracy value: 0.8741148701809599 --- # ditmodel This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co./microsoft/dit-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2285 - Accuracy: 0.8741 - Weighted f1: 0.8720 - Micro f1: 0.8741 - Macro f1: 0.8640 - Weighted recall: 0.8741 - Micro recall: 0.8741 - Macro recall: 0.8626 - Weighted precision: 0.8780 - Micro precision: 0.8741 - Macro precision: 0.8745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 0.8637 | 0.98 | 38 | 0.5986 | 0.6778 | 0.5949 | 0.6778 | 0.5662 | 0.6778 | 0.6778 | 0.6474 | 0.7506 | 0.6778 | 0.7511 | | 0.5018 | 1.99 | 77 | 0.2707 | 0.8517 | 0.8453 | 0.8517 | 0.8377 | 0.8517 | 0.8517 | 0.8345 | 0.8588 | 0.8517 | 0.8623 | | 0.3761 | 2.94 | 114 | 0.2285 | 0.8741 | 0.8720 | 0.8741 | 0.8640 | 0.8741 | 0.8741 | 0.8626 | 0.8780 | 0.8741 | 0.8745 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.6.1 - Tokenizers 0.15.1