## Instruction Tuning LLAMA3 This repo uses the `torchtune` for instruction tuning the llama3 pretrained model on mathematical tasks using LORA. ### Wandb report link https://wandb.ai/som/torchtune_llama3?nw=nwusersom ## Instruction_tuned Model https://huggingface.co./Someshfengde/llama-3-instruction-tuned-AIMO ### Original metallama model https://huggingface.co./meta-llama/Meta-Llama-3-8B ## For running this project ``` > pip install poetry > poetry install ``` Further commands over shell terminal ### To download the model ``` tune download meta-llama/Meta-Llama-3-8B \ --output-dir llama3-8b-hf \ --hf-token ``` **To start instruction tuning with lora and torchtune** ``` tune run lora_finetune_single_device --config ./lora_finetune_single_device.yaml ``` ### To quantize the model ``` tune run quantize --config ./quantization_config.yaml ``` ### To generate inference from model. ``` tune run generate --config ./generation_config.yaml \ prompt="what is 2 + 2." ``` ## Dataset used https://huggingface.co./datasets/Someshfengde/AIMO_dataset ### Evaluations **To run evaluations** ``` tune run eleuther_eval --config ./eval_config.yaml ``` ### TruthfulQA: 0.42 ![alt text](images/image.png) ### MMLU Abstract Algebra: 0.35 ![alt text](images/image-1.png) ### MATHQA: 0.33 ![alt text](images/image-2.png) ### Agieval_sat_math: 0.31 ![alt text](images/image-3.png)