#%% # coding=utf-8 # Copyright 2024 Meta and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Hiera model.""" import math from dataclasses import dataclass from typing import Dict, List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss import transformers from transformers.activations import ACT2FN from transformers.modeling_outputs import ( BackboneOutput, BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput, ModelOutput, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from transformers.utils.backbone_utils import BackboneMixin # coding=utf-8 # Copyright 2024 Meta and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Hiera model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from transformers.configuration_utils import PretrainedConfig from transformers.onnx import OnnxConfig from transformers.utils import logging from transformers.utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) HIERA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "EduardoPacheco/hiera-tiny-224": "https://huggingface.co./EduardoPacheco/hiera-tiny-224/resolve/main/config.json", } class HieraConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`HieraModel`]. It is used to instantiate an Hiera model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Hiera [EduardoPacheco/hiera-base-224](https://huggingface.co./EduardoPacheco/hiera-base-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: embed_dim (`int`, *optional*, defaults to 96): Dimensionality of patch embedding. input_size (`list(int)`, *optional*, defaults to `[224, 224]`): The size (resolution) of input in the format (height, width) for images and (frames, height, width) for videos. patch_kernel (`list(int)`, *optional*, defaults to `[7, 7]`): The size (resolution) of each patch. patch_stride (`list(int)`, *optional*, defaults to `[4, 4]`): The stride of the patch. patch_padding (`list(int)`, *optional*, defaults to `[3, 3]`): The padding of the patch. mlp_ratio (`float`, *optional*, defaults to 4.0): The ratio of mlp hidden dim to embedding dim. depths (`list(int)`, *optional*, defaults to `[2, 3, 16, 3]`): Depth of each layer in the Transformer encoder. initial_num_heads (`int`, *optional*, defaults to 1): Initial number of attention heads in the first layer of the Transformer encoder. num_head_multiplier (`float`, *optional*, defaults to 2.0): The multiplier to the number of attention heads in each layer of the Transformer encoder. embed_dim_multiplier (`float`, *optional*, defaults to 2.0): The multiplier to the dimensionality of patch embedding in each layer of the Transformer encoder. num_query_pool (`int`, *optional*, defaults to 3): The number of query pool stages. query_stride (`list(int)`, *optional*, defaults to `[2, 2]`): The stride of the query pool. masked_unit_size (`list(int)`, *optional*, defaults to `[8, 8]`): The size of the masked unit. masked_unit_attention (`list(bool)`, *optional*, defaults to `[True, True, False, False]`): Whether to use masked unit attention in each layer of the Transformer encoder. drop_path_rate (`float`, *optional*, defaults to 0.0): The drop path rate. sep_pos_embed (`bool`, *optional*, defaults to `False`): Whether to use separate position embedding for temporal and spatial dimensions. Must be `True` for videos. and `False` for images. num_channels (`int`, *optional*, defaults to 3): The number of input channels. hidden_act (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices and the zero_initializer for initializing all bias vectors. layer_norm_init (`float`, *optional*, defaults to 1.0): The initial weight value for layer normalization layers. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. decoder_embed_dim (`int`, *optional*): Dimensionality of decoder embeddings for MAE pretraining. decoder_depth (`int`, *optional*): Depth of the decoder for MAE pretraining. decoder_num_heads (`int`, *optional*): Number of attention heads in each layer of the decoder for MAE pretraining. norm_pix_loss (`bool`, *optional*, defaults to `True`): Whether to normalize the pixel loss by the number of pixels. mask_ratio (`float`, *optional*, defaults to 0.6): The ratio of masked tokens in the input. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import HieraConfig, HieraModel >>> # Initializing a Hiera hiera-base-patch16-224 style configuration >>> configuration = HieraConfig() >>> # Initializing a model (with random weights) from the hiera-base-patch16-224 style configuration >>> model = HieraModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "hiera" attribute_map = {"num_hidden_layers": "num_layers"} def __init__( self, embed_dim=96, input_size=[224, 224], patch_kernel=[7, 7], patch_stride=[4, 4], patch_padding=[3, 3], mlp_ratio=4.0, depths=[2, 3, 16, 3], initial_num_heads=1, num_head_multiplier=2.0, embed_dim_multiplier=2.0, num_query_pool=3, query_stride=[2, 2], masked_unit_size=[8, 8], masked_unit_attention=[True, True, False, False], drop_path_rate=0.0, sep_pos_embed=False, num_channels=3, hidden_act="gelu", initializer_range=0.02, layer_norm_init=1.0, layer_norm_eps=1e-6, decoder_embed_dim=None, decoder_depth=None, decoder_num_heads=None, norm_pix_loss=True, mask_ratio=0.6, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) if masked_unit_size[0] % query_stride[0] ** (len(depths) - 1) != 0: raise ValueError( f"masked_unit_size[0] ({masked_unit_size[0]}) must be divisible by query_stride[0] ({query_stride[0]}) " f"raised to the power of the number of layers ({len(depths) - 1})" ) if num_query_pool >= len(depths): raise ValueError( f"num_query_pool ({num_query_pool}) must be less than the number of layers ({len(depths)})" ) self.embed_dim = embed_dim self.input_size = input_size self.patch_kernel = patch_kernel self.patch_stride = patch_stride self.patch_padding = patch_padding self.mlp_ratio = mlp_ratio self.depths = depths self.num_layers = len(depths) self.initial_num_heads = initial_num_heads self.num_head_multiplier = num_head_multiplier self.embed_dim_multiplier = embed_dim_multiplier self.num_query_pool = num_query_pool self.query_stride = query_stride self.masked_unit_size = masked_unit_size self.masked_unit_attention = masked_unit_attention self.drop_path_rate = drop_path_rate self.sep_pos_embed = sep_pos_embed self.num_channels = num_channels self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_init = layer_norm_init self.layer_norm_eps = layer_norm_eps self.decoder_embed_dim = decoder_embed_dim self.decoder_depth = decoder_depth self.decoder_num_heads = decoder_num_heads self.norm_pix_loss = norm_pix_loss self.mask_ratio = mask_ratio # we set the hidden_size attribute in order to make Hiera work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model self.hidden_size = int(embed_dim * embed_dim_multiplier ** (len(depths) - 1)) self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names ) class HieraOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4 logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "HieraConfig" # Base docstring _CHECKPOINT_FOR_DOC = "EduardoPacheco/hiera-tiny-224" _EXPECTED_OUTPUT_SHAPE = [1, 49, 768] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "EduardoPacheco/hiera-tiny-224-in1k" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" HIERA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "EduardoPacheco/hiera-tiny-224", # See all Hiera models at https://huggingface.co./models?filter=hiera ] @dataclass class HieraEncoderOutput(ModelOutput): """ Hiera encoder's outputs, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Thesre are the unrolled hidden states of the model. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, height, width, hidden_size)`. These are the reshaped and re-rolled hidden states of the model. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class HieraModelOutput(ModelOutput): """ Hiera model's outputs that also contains a pooling of the last hidden states. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed): Average pooling of the last layer hidden-state. mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (0) and which are not (1). ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Tensor containing the original index of the (shuffled) masked patches. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. These are the unrolled hidden states of the model. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, height, width, hidden_size)`. These are the reshaped and re-rolled hidden states of the model. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ last_hidden_state: torch.FloatTensor = None pooler_output: Optional[torch.FloatTensor] = None mask: torch.LongTensor = None ids_restore: torch.LongTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class HieraForImageClassificationOutput(ImageClassifierOutput): """ Hiera image classification outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, `optional`): Classification loss. logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`): Prediction scores of the classification head (logits of the output layer). hidden_states (`tuple(torch.FloatTensor)`, `optional`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. These are the unrolled hidden states of the model. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, `optional`): Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(torch.FloatTensor)`, `optional`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, height, width, hidden_size)`. These are the reshaped and re-rolled hidden states of the model. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class HieraForPreTrainingOutput(ModelOutput): """ Class for ViTMAEForPreTraining's outputs, with potential hidden states and attentions. Args: loss (`torch.FloatTensor` of shape `(1,)`): Pixel reconstruction loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (0) and which are not (1). ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Tensor containing the original index of the (shuffled) masked patches. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, height, width, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None mask: torch.LongTensor = None ids_restore: torch.LongTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None # Taken from https://github.com/facebookresearch/hiera/blob/main/hiera/hiera_utils.py#L73 def conv_nd(n: int) -> nn.Module: """ Returns a conv with nd (e.g., Conv2d for n=2). Work up to n=3. If you wanted a 4d Hiera, you could probably just implement this for n=4. (no promises) """ return [nn.Identity, nn.Conv1d, nn.Conv2d, nn.Conv3d][n] # Taken from https://github.com/facebookresearch/hiera/blob/main/hiera/hiera_utils.py#L81 def do_pool(x: torch.Tensor, stride: int) -> torch.Tensor: # Refer to `Unroll` to see how this performs a maxpool-Nd return x.view(x.shape[0], stride, -1, x.shape[-1]).max(dim=1).values class HieraPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config, is_mae: bool = False): super().__init__() # Support any number of spatial dimensions self.spatial_dims = len(config.patch_kernel) if self.spatial_dims not in (2, 3): raise ValueError( f"The number of dimensions of the input image should be 2 or 3, but got {self.spatial_dims}." ) self.num_channels = config.num_channels self.image_size = config.input_size[-2:] self.tokens_spatial_shape = [i // s for i, s in zip(config.input_size, config.patch_stride)] self.mask_spatial_shape = [i // s for i, s in zip(self.tokens_spatial_shape, config.masked_unit_size)] self.mask_ratio = config.mask_ratio self.is_mae = is_mae self.projection = conv_nd(self.spatial_dims)( self.num_channels, config.embed_dim, kernel_size=config.patch_kernel, stride=config.patch_stride, padding=config.patch_padding, ) def masked_conv(self, pixel_values: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: """Zero-out the masked regions of the input before conv. Prevents leakage of masked regions when using overlapping kernels. """ if mask is None: return self.projection(pixel_values) target_size = pixel_values.shape[2:] # Reshape mask to (batch_size, 1, mask_unit_height, mask_unit_width) mask = mask.view(pixel_values.shape[0], 1, *self.mask_spatial_shape) if len(mask.shape[2:]) != len(target_size): raise ValueError( f"The length of the spatial dimensions of the mask should match the one from input image, but got {len(mask.shape[2:])} and {len(target_size)}." ) if mask.shape[2:] != target_size: mask = nn.functional.interpolate(mask, size=target_size) return self.projection(pixel_values * mask.bool()) def random_masking(self, pixel_values, noise=None): """ Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random noise. Args: pixel_values (`torch.LongTensor` of shape `(batch_size, num_channels, height, width)`) noise (`torch.FloatTensor` of shape `(batch_size, num_mask_units)`, *optional*) which is mainly used for testing purposes to control randomness and maintain the reproducibility """ batch_size = pixel_values.shape[0] # Tokens selected for masking at mask unit level num_windows = math.prod(self.mask_spatial_shape) len_keep = int(num_windows * (1 - self.mask_ratio)) if noise is None: noise = torch.rand(batch_size, num_windows, device=pixel_values.device) # Sort noise for each sample ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove ids_restore = torch.argsort(ids_shuffle, dim=1) # Generate the binary mask: 1 is *keep*, 0 is *remove* # Note this is opposite to original MAE mask = torch.zeros([batch_size, num_windows], device=pixel_values.device) mask[:, :len_keep] = 1 # Unshuffle to get the binary mask mask = torch.gather(mask, dim=1, index=ids_restore) return mask, ids_restore def forward( self, pixel_values: torch.Tensor, noise: Optional[torch.FloatTensor] = None, interpolate_pos_encoding: bool = False, ) -> torch.Tensor: num_channels = pixel_values.shape[1] height, width = pixel_values.shape[-2:] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." f" Expected {self.num_channels} but got {num_channels}." ) if not interpolate_pos_encoding: if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) (mask, ids_restore) = self.random_masking(pixel_values, noise=noise) if self.is_mae else (None, None) embeddings = self.masked_conv(pixel_values, mask) embeddings = embeddings.flatten(2).transpose(2, 1) return embeddings, mask, ids_restore class HieraEmbeddings(nn.Module): """ Construct position and patch embeddings. """ def __init__(self, config: HieraConfig, is_mae: bool = False) -> None: super().__init__() self.patch_stride = config.patch_stride self.tokens_spatial_shape = [i // s for i, s in zip(config.input_size, config.patch_stride)] self.mask_spatial_shape = [i // s for i, s in zip(self.tokens_spatial_shape, config.masked_unit_size)] self.num_tokens = math.prod(self.tokens_spatial_shape) self.sep_pos_embed = config.sep_pos_embed self.is_mae = is_mae self.patch_embeddings = HieraPatchEmbeddings(config, is_mae=is_mae) if self.sep_pos_embed: self.position_embeddings_spatial = nn.Parameter( torch.zeros( 1, self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2], config.embed_dim, ) ) self.position_embeddings_temporal = nn.Parameter( torch.zeros(1, self.tokens_spatial_shape[0], config.embed_dim) ) else: self.position_embeddings = nn.Parameter(torch.zeros(1, self.num_tokens, config.embed_dim)) def interpolate_pos_encoding( self, embeddings: torch.Tensor, pos_embeds: torch.Tensor, height: int, width: int ) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. Adapted from: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ num_patches = embeddings.shape[1] num_positions = pos_embeds.shape[1] if num_patches == num_positions and height == width: return pos_embeds dim = embeddings.shape[-1] h0 = height // self.patch_stride[0] if not self.sep_pos_embed else height // self.patch_stride[1] w0 = width // self.patch_stride[1] if not self.sep_pos_embed else width // self.patch_stride[2] # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 h0, w0 = h0 + 0.1, w0 + 0.1 pos_embeds = pos_embeds.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) pos_embeds = pos_embeds.permute(0, 3, 1, 2) pos_embeds = nn.functional.interpolate( pos_embeds, scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)), mode="bicubic", align_corners=False, ) if int(h0) != pos_embeds.shape[-2] or int(w0) != pos_embeds.shape[-1]: raise ValueError("The interpolated position encoding does not have the right size") pos_embeds = pos_embeds.permute(0, 2, 3, 1).view(1, -1, dim) return pos_embeds def get_position_embedding( self, embeddings: torch.Tensor, height: int, width: int, interpolate_pos_encoding: bool ) -> torch.Tensor: if self.sep_pos_embed: spatial = self.position_embeddings_spatial spatial = ( self.interpolate_pos_encoding(embeddings, spatial, height, width) if interpolate_pos_encoding else spatial ) spatial = spatial.repeat(1, self.tokens_spatial_shape[0], 1) temporal = torch.repeat_interleave( self.position_embeddings_temporal, self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2], dim=1, ) return spatial + temporal else: position_embeddings = self.position_embeddings position_embeddings = ( self.interpolate_pos_encoding(embeddings, position_embeddings, height, width) if interpolate_pos_encoding else position_embeddings ) return position_embeddings def forward( self, pixel_values: torch.Tensor, noise: Optional[torch.FloatTensor] = None, interpolate_pos_encoding: bool = False, ) -> torch.Tensor: if len(self.tokens_spatial_shape) == 2: batch_size, num_channels, height, width = pixel_values.shape else: batch_size, num_channels, depth, height, width = pixel_values.shape embeddings, mask, ids_restore = self.patch_embeddings( pixel_values, noise=noise, interpolate_pos_encoding=interpolate_pos_encoding ) embeddings = embeddings + self.get_position_embedding(embeddings, height, width, interpolate_pos_encoding) return embeddings, mask, ids_restore class HieraMaskUnitAttention(nn.Module): """ Computes either Mask Unit or Global Attention. Also is able to perform q pooling. Note: this assumes the tokens have already been flattened and unrolled into mask units. """ def __init__( self, dim: int, dim_out: int, num_heads: int, query_stride: int = 1, window_size: int = 0, use_mask_unit_attn: bool = False, ): super().__init__() self.dim = dim self.dim_out = dim_out self.num_heads = num_heads self.query_stride = query_stride self.head_dim = dim_out // num_heads self.scale = (self.head_dim) ** -0.5 self.qkv = nn.Linear(dim, 3 * dim_out) self.proj = nn.Linear(dim_out, dim_out) self.window_size = window_size self.use_mask_unit_attn = use_mask_unit_attn def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.FloatTensor] = None, output_attentions: bool = False, ) -> torch.Tensor: """Input should be of shape [batch, tokens, channels].""" batch_size, seq_len, _ = hidden_states.shape num_windows = 1 if self.use_mask_unit_attn: num_windows = seq_len // (self.query_stride * self.window_size) qkv = self.qkv(hidden_states) qkv = qkv.reshape(batch_size, -1, num_windows, 3, self.num_heads, self.head_dim) qkv = qkv.permute(3, 0, 4, 2, 1, 5) query, key, value = qkv.unbind(0) if self.query_stride > 1: # Refer to Unroll to see how this performs a maxpool-Nd query = query.view(batch_size, self.num_heads, num_windows, self.query_stride, -1, self.head_dim) query = query.max(dim=3).values attn_weights = (query * self.scale) @ key.transpose(-1, -2) attn_weights = attn_weights.softmax(dim=-1) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = attn_weights @ value attn_output = attn_output.transpose(1, 3).reshape(batch_size, -1, self.dim_out) attn_output = self.proj(attn_output) return (attn_output, attn_weights) if output_attentions else (attn_output, None) # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Hiera class HieraDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class HieraMlp(nn.Module): def __init__(self, config, dim: int): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(dim, int(dim * config.mlp_ratio)) self.fc2 = nn.Linear(int(dim * config.mlp_ratio), dim) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class HieraLayer(nn.Module): def __init__( self, config, dim: int, dim_out: int, num_heads: int, drop_path: float = 0.0, query_stride: int = 1, window_size: int = 0, use_mask_unit_attn: bool = False, ): super().__init__() self.dim = dim self.dim_out = dim_out self.query_stride = query_stride self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.attn = HieraMaskUnitAttention(dim, dim_out, num_heads, query_stride, window_size, use_mask_unit_attn) self.layernorm_after = nn.LayerNorm(dim_out, eps=config.layer_norm_eps) self.mlp = HieraMlp(config, dim_out) self.drop_path = HieraDropPath(drop_path) if drop_path > 0 else nn.Identity() if dim != dim_out: self.proj = nn.Linear(dim, dim_out) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.FloatTensor] = None, output_attentions: bool = False, ) -> torch.Tensor: batch_size, seq_len, _ = hidden_states.shape # Attention + Q Pooling hidden_states_norm = self.layernorm_before(hidden_states) if self.dim != self.dim_out: hidden_states = self.proj(hidden_states_norm) # Refer to `HieraUnroll` to see how this performs a maxpool-Nd hidden_states = hidden_states.view(batch_size, self.query_stride, -1, self.dim_out).max(dim=1).values (hidden_states_norm, attn_weights) = self.attn( hidden_states_norm, head_mask, output_attentions=output_attentions ) hidden_states = hidden_states + self.drop_path(hidden_states_norm) residual = hidden_states hidden_states = self.layernorm_after(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + self.drop_path(hidden_states) return (hidden_states, attn_weights) class HieraStage(nn.Module): def __init__( self, config, depth: int, dim: int, dim_out: int, num_heads: int, drop_path: List[float], query_stride: List[int], window_size: int, use_mask_unit_attn: bool, stage_num: Optional[int] = None, ) -> None: super().__init__() # we need to know if the previous stage used masked attention # mask unit or global attention. # lag by 1 layer, so that global attention, # applied post pooling on lower resolution previous_stage_used_masked_attention = False if stage_num is not None: previous_stage_used_masked_attention = config.masked_unit_attention[stage_num - 1 if stage_num > 0 else 0] self.layers = nn.ModuleList( [ HieraLayer( config=config, dim=dim if i == 0 else dim_out, dim_out=dim_out, num_heads=num_heads, drop_path=drop_path[i], query_stride=query_stride[i], window_size=window_size, use_mask_unit_attn=use_mask_unit_attn or (previous_stage_used_masked_attention and i == 0), ) for i in range(depth) ] ) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.FloatTensor], output_attentions: bool = False ) -> torch.Tensor: for i, layer_module in enumerate(self.layers): layer_head_mask = head_mask[i] if head_mask is not None else None (hidden_states, attn_weights) = layer_module( hidden_states, layer_head_mask, output_attentions=output_attentions ) return hidden_states, attn_weights def undo_windowing(hidden_states: torch.Tensor, shape: List[int], mask_unit_shape: List[int]) -> torch.Tensor: """ Restore spatial organization by undoing windowed organization of mask units. """ num_dims = len(shape) batch_size, hidden_size = hidden_states.shape[0], hidden_states.shape[-1] # From: [batch_size, num_mask_unit_height*num_#mask_unit_wdith, mask_unit_height, mask_unit_width, hidden_size] # To: [batch_size, num_mask_unit_height, num_mask_unit_width, mask_unit_height, mask_unit_width, hidden_size] num_mask_units = [s // mu for s, mu in zip(shape, mask_unit_shape)] hidden_states = hidden_states.view(batch_size, *num_mask_units, *mask_unit_shape, hidden_size) # From: [batch_size, num_mask_unit_height, num_mask_unit_width, mask_unit_height, mask_unit_width, hidden_size] # To: [batch_size, num_mask_unit_height*mask_unit_height, num_mask_unit_width*mask_unit_width, hidden_size] permute = ( [0] + sum( [list(p) for p in zip(range(1, 1 + num_dims), range(1 + num_dims, 1 + 2 * num_dims))], [], ) + [len(hidden_states.shape) - 1] ) hidden_states = hidden_states.permute(permute).reshape(batch_size, *shape, hidden_size) return hidden_states class HieraEncoder(nn.Module): def __init__(self, config: HieraConfig) -> None: super().__init__() self.config = config # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] # query strides rule stage_ends = [sum(config.depths[:i]) - 1 for i in range(1, len(config.depths) + 1)] query_pool_layer = [stage_end + 1 for stage_end in stage_ends[: config.num_query_pool]] query_strides = [ math.prod(config.query_stride) if i in query_pool_layer else 1 for i in range(sum(config.depths)) ] # Transformer blocks self.stages = nn.ModuleList() embed_dim = config.embed_dim for idx_stage, depth in enumerate(config.depths): dim_out = int(config.embed_dim * config.embed_dim_multiplier**idx_stage) stage = HieraStage( config=config, depth=depth, dim=embed_dim, dim_out=dim_out, num_heads=int(config.initial_num_heads * config.num_head_multiplier**idx_stage), drop_path=dpr[sum(config.depths[:idx_stage]) : sum(config.depths[: idx_stage + 1])], query_stride=query_strides[sum(config.depths[:idx_stage]) : sum(config.depths[: idx_stage + 1])], window_size=int(math.prod(config.masked_unit_size) * math.prod(config.query_stride) ** -idx_stage), use_mask_unit_attn=config.masked_unit_attention[idx_stage], stage_num=idx_stage, ) embed_dim = dim_out self.stages.append(stage) # Setting reroll schedule # The first stage has to reverse everything # The next stage has to reverse all but the first unroll, etc. stage_size = [i // s for i, s in zip(config.input_size, config.patch_stride)] unroll_schedule = [config.query_stride] * len(config.depths[:-1]) self.schedule = {} for idx_stage in range(len(config.depths)): self.schedule[idx_stage] = unroll_schedule, stage_size if idx_stage < config.num_query_pool: stage_size = [i // s for i, s in zip(stage_size, config.query_stride)] unroll_schedule = unroll_schedule[1:] self.gradient_checkpointing = False def reroll( self, hidden_states: torch.Tensor, stage_idx: int, mask: Optional[torch.BoolTensor] = None ) -> torch.Tensor: """ Roll the given tensor back up to spatial order assuming it's from the given block. If no mask is provided returns: - [batch_size, height, width, hidden_size] for 2d - [batch_size, frames, height, width, hidden_size] for 3d If a mask is provided returns: - [batch_size, num_mask_units, mask_unit_height, mask_unit_width, hidden_size] for 2d """ schedule, size = self.schedule[stage_idx] batch_size, seq_len, hidden_size = hidden_states.shape num_dim = len(size) mask_unit_shape = [1] * num_dim for strides in schedule: # Extract the current patch from seq_len hidden_states = hidden_states.view( batch_size, *strides, seq_len // math.prod(strides), *mask_unit_shape, hidden_size ) # Move that patch into the current MU # Example in 2d: # Input: [batch_size, stride, stride, seq_len//(stride*stride), mask_unit_height, mask_unit_width, hidden_size] # Output: [batch_size, seq_len//(stride*stride), stride, mask_unit_height, stride, mask_unit_width, hidden_size] L = len(hidden_states.shape) permute = ( [0, 1 + num_dim] + sum( [list(p) for p in zip(range(1, 1 + num_dim), range(1 + num_dim + 1, L - 1))], [], ) + [L - 1] ) hidden_states = hidden_states.permute(permute) # Reshape to [batch_size, seq_len//(stride*stride), *mask_units, hidden_size] for i in range(num_dim): mask_unit_shape[i] *= strides[i] hidden_states = hidden_states.reshape(batch_size, -1, *mask_unit_shape, hidden_size) seq_len = hidden_states.shape[1] # Current shape (e.g., 2d: [batch_size, #num_mask_units_height*#num_mask_units_width, mask_unit_height, mask_unit_width, hidden_size]) hidden_states = hidden_states.view(batch_size, seq_len, *mask_unit_shape, hidden_size) # If masked, return [batch_size, num_mask_units, mask_unit_height, mask_unit_width, hidden_size] if mask is not None: return hidden_states # If not masked, we can return [batch_size, height, width, hidden_size] hidden_states = undo_windowing(hidden_states, size, mask_unit_shape) return hidden_states def forward( self, hidden_states: torch.Tensor, mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_reshaped_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) reshaped_hidden_states = self.reroll(hidden_states, stage_idx=0, mask=mask) all_reshaped_hidden_states = all_reshaped_hidden_states + (reshaped_hidden_states,) for i, stage_module in enumerate(self.stages): layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( stage_module.__call__, hidden_states, layer_head_mask, output_attentions ) else: layer_outputs = stage_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) reshaped_hidden_states = self.reroll(hidden_states, stage_idx=i, mask=mask) all_reshaped_hidden_states = all_reshaped_hidden_states + (reshaped_hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return HieraEncoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, reshaped_hidden_states=all_reshaped_hidden_states, ) def unroll(hidden_states: torch.Tensor, size: List[int], schedule: List[List[int]]) -> torch.Tensor: """ Reorders the tokens such that patches are contiguous in memory. E.g., given [batch_size, (height, width), hidden_size] and stride of (stride, stride), this will re-order the tokens as [batch_size, (stride, stride, height // stride, width // stride), hidden_size] This allows operations like Max2d to be computed as x.view(batch_size, stride*stride, -1, hidden_size).max(dim=1). Not only is this faster, but it also makes it easy to support inputs of arbitrary dimensions in addition to patch-wise sparsity. Performing this operation multiple times in sequence puts entire windows as contiguous in memory. For instance, if you applied the stride (2, 2) 3 times, entire windows of size 8x8 would be contiguous in memory, allowing operations like mask unit attention computed easily and efficiently, while also allowing max to be applied sequentially. Note: This means that intermediate values of the model are not in height x width order, so they need to be re-rolled if you want to use the intermediate values as a height x width feature map. The last block of the network is fine though, since by then the strides are all consumed. """ batch_size, _, hidden_size = hidden_states.shape current_size = size hidden_states = hidden_states.view(*([batch_size] + current_size + [hidden_size])) for strides in schedule: # Move patches with the given strides to the batch dimension # Create a view of the tensor with the patch stride as separate dims # For example in 2d: [batch_size, height // stride, stride, width // stride, stride, C] current_size = [i // s for i, s in zip(current_size, strides)] # initialize new_shape with [height // stride, stride, width // stride, stride] new_shape = [item for pair in zip(current_size, strides) for item in pair] # add batch_size and hidden_size to new_shape new_shape = [batch_size] + new_shape + [hidden_size] hidden_states = hidden_states.view(new_shape) # Move the patch stride into the batch dimension # For example in 2d: [batch_size, stride, stride, height // stride, width // stride, hidden_size] num_dims = len(new_shape) permute = [0] + list(range(2, num_dims - 1, 2)) + list(range(1, num_dims - 1, 2)) + [num_dims - 1] hidden_states = hidden_states.permute(permute) # Now finally flatten the relevant dims into the batch dimension hidden_states = hidden_states.flatten(0, len(strides)) batch_size *= math.prod(strides) hidden_states = hidden_states.reshape(-1, math.prod(size), hidden_size) return hidden_states class HieraPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = HieraConfig base_model_prefix = "hiera" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module) -> None: """Initialize the weights""" std = self.config.initializer_range if isinstance(module, HieraEmbeddings): if self.config.sep_pos_embed: nn.init.trunc_normal_(module.position_embeddings_spatial, std=std) nn.init.trunc_normal_(module.position_embeddings_temporal, std=std) else: nn.init.trunc_normal_(module.position_embeddings, std=std) elif isinstance(module, HieraDecoder): nn.init.trunc_normal_(module.mask_token, std=std) nn.init.trunc_normal_(module.decoder_position_embeddings, std=std) elif isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d)): nn.init.trunc_normal_(module.weight, std=std) if module.bias is not None: nn.init.constant_(module.bias, std) elif isinstance(module, nn.LayerNorm): nn.init.constant_(module.bias, std) nn.init.constant_(module.weight, self.config.layer_norm_init) HIERA_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`HieraConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ HIERA_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BitImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. interpolate_pos_encoding (`bool`, *optional*): Whether to interpolate the pre-trained position encodings. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class HieraPooler(nn.Module): def __init__(self, config: HieraConfig): super().__init__() num_features = int(config.embed_dim * config.embed_dim_multiplier ** (len(config.depths) - 1)) self.layernorm = nn.LayerNorm(num_features, eps=config.layer_norm_eps) self.pooler = nn.AdaptiveAvgPool1d(1) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = hidden_states.transpose(1, 2) pooled_output = self.pooler(hidden_states) pooled_output = torch.flatten(pooled_output, 1) pooled_output = self.layernorm(pooled_output) return pooled_output @add_start_docstrings( "The bare Hiera Model transformer outputting raw hidden-states without any specific head on top.", HIERA_START_DOCSTRING, """ add_pooling_layer (`bool`, *optional*, defaults to `True`): Whether or not to apply pooling layer. is_mae (`bool`, *optional*, defaults to `False`): Whether or not to run the model on MAE mode. """, ) class HieraModel(HieraPreTrainedModel): def __init__(self, config: HieraConfig, add_pooling_layer: bool = True, is_mae: bool = False): super().__init__(config) self.num_features = int(config.embed_dim * config.embed_dim_multiplier ** (len(config.depths) - 1)) self.embeddings = HieraEmbeddings(config, is_mae=is_mae) self.encoder = HieraEncoder(config) self.unroll_size = [i // s for i, s in zip(config.input_size, config.patch_stride)] self.unroll_schedule = [config.query_stride] * len(config.depths[:-1]) self.pooler = HieraPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> HieraPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(HIERA_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=HieraModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, noise: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" noise (`torch.FloatTensor` of shape `(batch_size, num_mask_units)`, *optional*) which is mainly used for testing purposes to control randomness and maintain the reproducibility when is_mae is set to True. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, len(self.config.depths)) # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?) expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype if pixel_values.dtype != expected_dtype: pixel_values = pixel_values.to(expected_dtype) embedding_output, mask, ids_restore = self.embeddings( pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, noise=noise ) hidden_states = unroll(embedding_output, self.unroll_size, self.unroll_schedule) # Discard masked tokens if mask is provided if mask is not None: mask_unit_area = math.prod(self.config.masked_unit_size) batch_size, _, hidden_size = hidden_states.shape positions = mask.unsqueeze(-1).tile(1, mask_unit_area, hidden_size) positions = positions.bool() hidden_states = hidden_states[positions] hidden_states = hidden_states.view(batch_size, -1, hidden_size) encoder_outputs = self.encoder( hidden_states, mask=mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = None if self.pooler is not None: pooled_output = self.pooler(sequence_output) if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) head_outputs = head_outputs + (mask, ids_restore) if mask is not None else head_outputs return head_outputs + encoder_outputs[1:] return HieraModelOutput( last_hidden_state=sequence_output, pooler_output=pooled_output, mask=mask, ids_restore=ids_restore, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, reshaped_hidden_states=encoder_outputs.reshaped_hidden_states, ) class HieraDecoder(nn.Module): def __init__(self, config: HieraConfig): super().__init__() num_features = int(config.embed_dim * config.embed_dim_multiplier ** (len(config.depths) - 1)) self.tokens_spatial_shape = [i // s for i, s in zip(config.input_size, config.patch_stride)] self.tokens_spatial_shape_final = [ i // s ** (config.num_query_pool) for i, s in zip(self.tokens_spatial_shape, config.query_stride) ] self.mask_unit_spatial_shape_final = [ i // s ** (config.num_query_pool) for i, s in zip(config.masked_unit_size, config.query_stride) ] self.decoder_embeddings = nn.Linear(num_features, config.decoder_embed_dim) self.mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_embed_dim)) self.decoder_position_embeddings = nn.Parameter( torch.zeros(1, math.prod(self.tokens_spatial_shape_final), config.decoder_embed_dim) ) self.decoder_block = HieraStage( config=config, dim=config.decoder_embed_dim, dim_out=config.decoder_embed_dim, num_heads=config.decoder_num_heads, depth=config.decoder_depth, use_mask_unit_attn=False, drop_path=[0.0] * config.decoder_depth, query_stride=[1] * config.decoder_depth, window_size=0, ) self.decoder_norm = nn.LayerNorm(config.decoder_embed_dim, eps=config.layer_norm_eps) # patch stride of prediction self.pred_stride = config.patch_stride[-1] * (config.query_stride[-1] ** config.num_query_pool) pred_dim = (self.pred_stride ** len(config.query_stride)) * config.num_channels self.decoder_pred = nn.Linear(config.decoder_embed_dim, pred_dim) def forward( self, encoder_hidden_states: torch.Tensor, mask: torch.BoolTensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> torch.Tensor: # Embed tokens hidden_states = self.decoder_embeddings(encoder_hidden_states) # Combine visible and mask tokens # hidden_states : [batch_size, num_mask_units_visible, *mask_unit_spatial_shape_final, decoder_embed_dim] # mask: [batch_size, num_mask_units] decoder_hidden_states = torch.zeros( *mask.shape, *hidden_states.shape[2:], device=hidden_states.device, dtype=hidden_states.dtype ) mask_tokens = self.mask_token.view((1,) * (len(mask.shape) + len(hidden_states.shape[2:-1])) + (-1,)) new_mask_shape = mask.shape + (1,) * len(hidden_states.shape[2:]) mask = mask.reshape(new_mask_shape) expand_shape = (-1,) * 2 + hidden_states.shape[2:] mask = mask.expand(expand_shape) decoder_hidden_states[mask.bool()] = hidden_states.flatten() decoder_hidden_states = (1 - mask) * mask_tokens + mask * decoder_hidden_states # Get back spatial order hidden_states = undo_windowing( decoder_hidden_states, self.tokens_spatial_shape_final, self.mask_unit_spatial_shape_final, ) mask = undo_windowing( mask[..., 0:1], self.tokens_spatial_shape_final, self.mask_unit_spatial_shape_final, ) # Flatten hidden_states = hidden_states.reshape(hidden_states.shape[0], -1, hidden_states.shape[-1]) mask = mask.view(hidden_states.shape[0], -1) # Add pos embed hidden_states = hidden_states + self.decoder_position_embeddings # Apply decoder blocks hidden_states, attn_weights = self.decoder_block( hidden_states, head_mask=head_mask, output_attentions=output_attentions ) hidden_states = self.decoder_norm(hidden_states) # Predictor projection hidden_states = self.decoder_pred(hidden_states) return hidden_states, mask class HieraMultiScaleHead(nn.Module): def __init__(self, config: HieraConfig): super().__init__() self.mask_unit_spatial_shape_final = [ i // s ** (config.num_query_pool) for i, s in zip(config.masked_unit_size, config.query_stride) ] self.stage_dimensions = [ int(config.embed_dim * config.embed_dim_multiplier**i) for i in range(len(config.depths)) ] current_masked_unit_size = config.masked_unit_size self.multi_scale_fusion_heads = nn.ModuleList() for idx in range(config.num_query_pool): kernel = [i // s for i, s in zip(current_masked_unit_size, self.mask_unit_spatial_shape_final)] current_masked_unit_size = [i // s for i, s in zip(current_masked_unit_size, config.query_stride)] self.multi_scale_fusion_heads.append( conv_nd(len(config.query_stride))( self.stage_dimensions[idx], self.stage_dimensions[-1], kernel_size=kernel, stride=kernel, ) ) self.multi_scale_fusion_heads.append(nn.Identity()) def apply_fusion_head(self, head: nn.Module, hidden_states: torch.Tensor) -> torch.Tensor: if isinstance(head, nn.Identity): return hidden_states batch_size, num_mask_units = hidden_states.shape[0:2] # From: [batch_size, num_mask_units, mask_unit_height, mask_unit_width, hidden_size] # To: head([batch_size * num_mask_units, hidden_size, mask_unit_height, mask_unit_width]) permute = [0] + [len(hidden_states.shape) - 2] + list(range(1, len(hidden_states.shape) - 2)) hidden_states = hidden_states.reshape(batch_size * num_mask_units, *hidden_states.shape[2:]) hidden_states = hidden_states.permute(permute) hidden_states = head(hidden_states) # Restore original layout permute = [0] + list(range(2, len(hidden_states.shape))) + [1] hidden_states = hidden_states.permute(permute) hidden_states = hidden_states.reshape( batch_size, num_mask_units, *hidden_states.shape[1:-1], hidden_states.shape[-1] ) return hidden_states def forward(self, feature_maps: List[torch.Tensor]) -> torch.Tensor: # Multi-scale fusion hidden_states = 0.0 for head, feature_map in zip(self.multi_scale_fusion_heads, feature_maps): hidden_states = hidden_states + self.apply_fusion_head(head, feature_map) return hidden_states @add_start_docstrings( """The Hiera Model transformer with the decoder on top for self-supervised pre-training. Note that we provide a script to pre-train this model on custom data in our [examples directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). """, HIERA_START_DOCSTRING, ) class HieraForPreTraining(HieraPreTrainedModel): def __init__(self, config: HieraConfig) -> None: super().__init__(config) # Encoder self.hiera = HieraModel(config, add_pooling_layer=False, is_mae=True) self.encoder_norm = nn.LayerNorm(self.hiera.num_features, eps=config.layer_norm_eps) # Multi-scale fusion heads self.multiscale_fusion = HieraMultiScaleHead(config) # Decoder self.decoder = HieraDecoder(config) self.pred_stride = self.decoder.pred_stride # Initialize weights and apply final processing self.post_init() def get_pixel_label_2d(self, pixel_values: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: # mask (boolean tensor): True means *masked* pixel_values = pixel_values.permute(0, 2, 3, 1) size = self.pred_stride label = pixel_values.unfold(1, size, size).unfold(2, size, size) label = label.flatten(1, 2).flatten(2) label = label[mask.bool()] if self.config.norm_pix_loss: mean = label.mean(dim=-1, keepdim=True) var = label.var(dim=-1, keepdim=True) label = (label - mean) / (var + 1.0e-6) ** 0.5 return label def get_pixel_label_3d(self, pixel_values: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: # mask (boolean tensor): True means *masked* pixel_values = pixel_values[:, :, :: self.patch_stride[0], :, :] size = self.pred_stride label = pixel_values.unfold(3, size, size).unfold(4, size, size) # Different from 2D label = label.permute(0, 2, 3, 4, 5, 6, 1) label = label.flatten(1, 3).flatten(2) label = label[mask.bool()] if self.config.norm_pix_loss: mean = label.mean(dim=-1, keepdim=True) var = label.var(dim=-1, keepdim=True) label = (label - mean) / (var + 1.0e-6) ** 0.5 return label def forward_loss(self, pixel_values: torch.Tensor, logits: torch.Tensor, mask: torch.BoolTensor): # We invert the mask such that 1.0 is *masked* mask = 1 - mask if len(self.config.query_stride) == 2: label = self.get_pixel_label_2d(pixel_values, mask) elif len(self.config.query_stride) == 3: label = self.get_pixel_label_3d(pixel_values, mask) else: raise NotImplementedError("Only images and videos are supported") logits = logits[mask.bool()] loss = (logits - label) ** 2 loss = loss.mean() return loss @add_start_docstrings_to_model_forward(HIERA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=HieraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, noise: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, HieraForPreTrainingOutput]: r""" noise (`torch.FloatTensor` of shape `(batch_size, num_mask_units)`, *optional*) which is mainly used for testing purposes to control randomness and maintain the reproducibility when is_mae is set to True. Returns: Examples: ```python >>> from transformers import AutoImageProcessor, HieraForPreTraining >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("EduardoPacheco/hiera-tiny-224-mae") >>> model = HieraForPreTraining.from_pretrained("EduardoPacheco/hiera-tiny-224-mae") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> list(logits.shape) [1, 196, 768] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.hiera( pixel_values, noise=noise, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=True, ) feature_maps = outputs.reshaped_hidden_states mask = outputs.mask ids_to_restore = outputs.ids_restore # Take only the query pooled and last hidden states feature_maps = feature_maps[1 : self.hiera.config.num_query_pool + 1] + (feature_maps[-1],) fused_hidden_states = self.multiscale_fusion(feature_maps) fused_hidden_states = self.encoder_norm(fused_hidden_states) # Reconstruct pixel values logits, mask = self.decoder( fused_hidden_states, mask=mask, head_mask=head_mask, output_attentions=output_attentions, ) loss = self.forward_loss(pixel_values, logits, mask) if not return_dict: output = (logits, mask, ids_to_restore) if output_hidden_states: output = output + (outputs.hidden_states,) if output_attentions: output = output + (outputs.attentions,) if output_hidden_states: output = output + (outputs.reshaped_hidden_states,) return ((loss,) + output) if loss is not None else output return HieraForPreTrainingOutput( loss=loss, logits=logits, mask=mask, ids_restore=ids_to_restore, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, reshaped_hidden_states=outputs.reshaped_hidden_states if output_hidden_states else None, ) @add_start_docstrings( """ Hiera Model transformer with an image classification head on top (a linear layer on top of the final hidden state with average pooling) e.g. for ImageNet. Note that it's possible to fine-tune Hiera on higher resolution images than the ones it has been trained on, by setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained position embeddings to the higher resolution. """, HIERA_START_DOCSTRING, ) class HieraForImageClassification(HieraPreTrainedModel): def __init__(self, config: HieraConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.hiera = HieraModel(config, add_pooling_layer=True, is_mae=False) # Classifier head self.classifier = ( nn.Linear(self.hiera.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(HIERA_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=HieraForImageClassificationOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, HieraForImageClassificationOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.hiera( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) pooled_output = outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[4:] return ((loss,) + output) if loss is not None else output return HieraForImageClassificationOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, reshaped_hidden_states=outputs.reshaped_hidden_states, ) @add_start_docstrings( """ Hiera backbone, to be used with frameworks like DETR and MaskFormer. """, HIERA_START_DOCSTRING, ) class HieraBackbone(HieraPreTrainedModel, BackboneMixin): def __init__(self, config: HieraConfig): super().__init__(config) super()._init_backbone(config) self.num_features = [config.embed_dim] + [ int(config.embed_dim * config.embed_dim_multiplier**i) for i in range(len(config.depths)) ] self.embeddings = HieraEmbeddings(config, is_mae=False) self.encoder = HieraEncoder(config) # Add layer norms to hidden states of out_features hidden_states_norms = {} for stage, num_channels in zip(self._out_features, self.channels): hidden_states_norms[stage] = nn.LayerNorm(num_channels) self.hidden_states_norms = nn.ModuleDict(hidden_states_norms) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def forward( self, pixel_values: torch.Tensor, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> BackboneOutput: """ Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoBackbone >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> processor = AutoImageProcessor.from_pretrained("EduardoPacheco/hiera-tiny-224") >>> model = AutoBackbone.from_pretrained( ... "EduardoPacheco/hiera-tiny-224", out_features=["stage1", "stage2", "stage3", "stage4"] ... ) >>> inputs = processor(image, return_tensors="pt") >>> outputs = model(**inputs) >>> feature_maps = outputs.feature_maps >>> list(feature_maps[-1].shape) [1, 768, 7, 7] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions embedding_output, _, _ = self.embeddings(pixel_values) outputs = self.encoder( embedding_output, head_mask=None, output_attentions=output_attentions, output_hidden_states=True, return_dict=True, ) hidden_states = outputs.reshaped_hidden_states feature_maps = () for stage, hidden_state in zip(self.stage_names, hidden_states): if stage in self.out_features: batch_size, height, width, num_channels = hidden_state.shape hidden_state = hidden_state.view(batch_size, height * width, num_channels) hidden_state = self.hidden_states_norms[stage](hidden_state) hidden_state = hidden_state.view(batch_size, height, width, num_channels) hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous() feature_maps += (hidden_state,) if not return_dict: output = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=feature_maps, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) # %%