File size: 83,014 Bytes
822ac71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
#%%
# coding=utf-8
# Copyright 2024 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Hiera model."""


import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

import transformers

from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BackboneOutput,
    BaseModelOutput,
    BaseModelOutputWithPooling,
    ImageClassifierOutput,
    ModelOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from transformers.utils.backbone_utils import BackboneMixin
# coding=utf-8
# Copyright 2024 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Hiera model configuration"""

from collections import OrderedDict
from typing import Mapping

from packaging import version

from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfig
from transformers.utils import logging
from transformers.utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices


logger = logging.get_logger(__name__)

HIERA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "EduardoPacheco/hiera-tiny-224": "https://huggingface.co./EduardoPacheco/hiera-tiny-224/resolve/main/config.json",
}


class HieraConfig(BackboneConfigMixin, PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`HieraModel`]. It is used to instantiate an Hiera
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Hiera
    [EduardoPacheco/hiera-base-224](https://huggingface.co./EduardoPacheco/hiera-base-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        embed_dim (`int`, *optional*, defaults to 96):
            Dimensionality of patch embedding.
        input_size (`list(int)`, *optional*, defaults to `[224, 224]`):
            The size (resolution) of input in the format (height, width) for images
            and (frames, height, width) for videos.
        patch_kernel (`list(int)`, *optional*, defaults to `[7, 7]`):
            The size (resolution) of each patch.
        patch_stride (`list(int)`, *optional*, defaults to `[4, 4]`):
            The stride of the patch.
        patch_padding (`list(int)`, *optional*, defaults to `[3, 3]`):
            The padding of the patch.
        mlp_ratio (`float`, *optional*, defaults to 4.0):
            The ratio of mlp hidden dim to embedding dim.
        depths (`list(int)`, *optional*, defaults to `[2, 3, 16, 3]`):
            Depth of each layer in the Transformer encoder.
        initial_num_heads (`int`, *optional*, defaults to 1):
            Initial number of attention heads in the first layer of the Transformer encoder.
        num_head_multiplier (`float`, *optional*, defaults to 2.0):
            The multiplier to the number of attention heads in each layer of the Transformer encoder.
        embed_dim_multiplier (`float`, *optional*, defaults to 2.0):
            The multiplier to the dimensionality of patch embedding in each layer of the Transformer encoder.
        num_query_pool (`int`, *optional*, defaults to 3):
            The number of query pool stages.
        query_stride (`list(int)`, *optional*, defaults to `[2, 2]`):
            The stride of the query pool.
        masked_unit_size (`list(int)`, *optional*, defaults to `[8, 8]`):
            The size of the masked unit.
        masked_unit_attention (`list(bool)`, *optional*, defaults to `[True, True, False, False]`):
            Whether to use masked unit attention in each layer of the Transformer encoder.
        drop_path_rate (`float`, *optional*, defaults to 0.0):
            The drop path rate.
        sep_pos_embed (`bool`, *optional*, defaults to `False`):
            Whether to use separate position embedding for temporal and spatial dimensions. Must be `True` for videos.
            and `False` for images.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        hidden_act (`str`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
            `"selu"` and `"gelu_new"` are supported.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices and
            the zero_initializer for initializing all bias vectors.
        layer_norm_init (`float`, *optional*, defaults to 1.0):
            The initial weight value for layer normalization layers.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        decoder_embed_dim (`int`, *optional*):
            Dimensionality of decoder embeddings for MAE pretraining.
        decoder_depth (`int`, *optional*):
            Depth of the decoder for MAE pretraining.
        decoder_num_heads (`int`, *optional*):
            Number of attention heads in each layer of the decoder for MAE pretraining.
        norm_pix_loss (`bool`, *optional*, defaults to `True`):
            Whether to normalize the pixel loss by the number of pixels.
        mask_ratio (`float`, *optional*, defaults to 0.6):
            The ratio of masked tokens in the input.
        out_features (`List[str]`, *optional*):
            If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
            (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
            corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
            same order as defined in the `stage_names` attribute.
        out_indices (`List[int]`, *optional*):
            If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
            many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
            If unset and `out_features` is unset, will default to the last stage. Must be in the
            same order as defined in the `stage_names` attribute.


    Example:

    ```python
    >>> from transformers import HieraConfig, HieraModel

    >>> # Initializing a Hiera hiera-base-patch16-224 style configuration
    >>> configuration = HieraConfig()

    >>> # Initializing a model (with random weights) from the hiera-base-patch16-224 style configuration
    >>> model = HieraModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "hiera"

    attribute_map = {"num_hidden_layers": "num_layers"}

    def __init__(
        self,
        embed_dim=96,
        input_size=[224, 224],
        patch_kernel=[7, 7],
        patch_stride=[4, 4],
        patch_padding=[3, 3],
        mlp_ratio=4.0,
        depths=[2, 3, 16, 3],
        initial_num_heads=1,
        num_head_multiplier=2.0,
        embed_dim_multiplier=2.0,
        num_query_pool=3,
        query_stride=[2, 2],
        masked_unit_size=[8, 8],
        masked_unit_attention=[True, True, False, False],
        drop_path_rate=0.0,
        sep_pos_embed=False,
        num_channels=3,
        hidden_act="gelu",
        initializer_range=0.02,
        layer_norm_init=1.0,
        layer_norm_eps=1e-6,
        decoder_embed_dim=None,
        decoder_depth=None,
        decoder_num_heads=None,
        norm_pix_loss=True,
        mask_ratio=0.6,
        out_features=None,
        out_indices=None,
        **kwargs,
    ):
        super().__init__(**kwargs)
        if masked_unit_size[0] % query_stride[0] ** (len(depths) - 1) != 0:
            raise ValueError(
                f"masked_unit_size[0] ({masked_unit_size[0]}) must be divisible by query_stride[0] ({query_stride[0]}) "
                f"raised to the power of the number of layers ({len(depths) - 1})"
            )

        if num_query_pool >= len(depths):
            raise ValueError(
                f"num_query_pool ({num_query_pool}) must be less than the number of layers ({len(depths)})"
            )

        self.embed_dim = embed_dim
        self.input_size = input_size
        self.patch_kernel = patch_kernel
        self.patch_stride = patch_stride
        self.patch_padding = patch_padding
        self.mlp_ratio = mlp_ratio
        self.depths = depths
        self.num_layers = len(depths)
        self.initial_num_heads = initial_num_heads
        self.num_head_multiplier = num_head_multiplier
        self.embed_dim_multiplier = embed_dim_multiplier
        self.num_query_pool = num_query_pool
        self.query_stride = query_stride
        self.masked_unit_size = masked_unit_size
        self.masked_unit_attention = masked_unit_attention
        self.drop_path_rate = drop_path_rate
        self.sep_pos_embed = sep_pos_embed
        self.num_channels = num_channels
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.layer_norm_init = layer_norm_init
        self.layer_norm_eps = layer_norm_eps
        self.decoder_embed_dim = decoder_embed_dim
        self.decoder_depth = decoder_depth
        self.decoder_num_heads = decoder_num_heads
        self.norm_pix_loss = norm_pix_loss
        self.mask_ratio = mask_ratio
        # we set the hidden_size attribute in order to make Hiera work with VisionEncoderDecoderModel
        # this indicates the channel dimension after the last stage of the model
        self.hidden_size = int(embed_dim * embed_dim_multiplier ** (len(depths) - 1))
        self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
        self._out_features, self._out_indices = get_aligned_output_features_output_indices(
            out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
        )


class HieraOnnxConfig(OnnxConfig):
    torch_onnx_minimum_version = version.parse("1.11")

    @property
    def inputs(self) -> Mapping[str, Mapping[int, str]]:
        return OrderedDict(
            [
                ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
            ]
        )

    @property
    def atol_for_validation(self) -> float:
        return 1e-4

logger = logging.get_logger(__name__)

# General docstring
_CONFIG_FOR_DOC = "HieraConfig"

# Base docstring
_CHECKPOINT_FOR_DOC = "EduardoPacheco/hiera-tiny-224"
_EXPECTED_OUTPUT_SHAPE = [1, 49, 768]

# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "EduardoPacheco/hiera-tiny-224-in1k"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"


HIERA_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "EduardoPacheco/hiera-tiny-224",
    # See all Hiera models at https://huggingface.co./models?filter=hiera
]


@dataclass
class HieraEncoderOutput(ModelOutput):
    """
    Hiera encoder's outputs, with potential hidden states and attentions.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, sequence_length, hidden_size)`. Thesre are the unrolled hidden states of the model.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, height, width, hidden_size)`. These are the reshaped and re-rolled hidden states of the model.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
            include the spatial dimensions.
    """

    last_hidden_state: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None


@dataclass
class HieraModelOutput(ModelOutput):
    """
    Hiera model's outputs that also contains a pooling of the last hidden states.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
            Average pooling of the last layer hidden-state.
        mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
            Tensor indicating which patches are masked (0) and which are not (1).
        ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Tensor containing the original index of the (shuffled) masked patches.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, sequence_length, hidden_size)`. These are the unrolled hidden states of the model.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, height, width, hidden_size)`. These are the reshaped and re-rolled hidden states of the model.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
            include the spatial dimensions.
    """

    last_hidden_state: torch.FloatTensor = None
    pooler_output: Optional[torch.FloatTensor] = None
    mask: torch.LongTensor = None
    ids_restore: torch.LongTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None


@dataclass
class HieraForImageClassificationOutput(ImageClassifierOutput):
    """
    Hiera image classification outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, `optional`):
            Classification loss.
        logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
            Prediction scores of the classification head (logits of the output layer).
        hidden_states (`tuple(torch.FloatTensor)`, `optional`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, sequence_length, hidden_size)`. These are the unrolled hidden states of the model.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, `optional`):
            Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        reshaped_hidden_states (`tuple(torch.FloatTensor)`, `optional`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, height, width, hidden_size)`. These are the reshaped and re-rolled hidden states of the model.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
            include the spatial dimensions.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None


@dataclass
class HieraForPreTrainingOutput(ModelOutput):
    """
    Class for ViTMAEForPreTraining's outputs, with potential hidden states and attentions.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`):
            Pixel reconstruction loss.
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`):
            Pixel reconstruction logits.
        mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
            Tensor indicating which patches are masked (0) and which are not (1).
        ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Tensor containing the original index of the (shuffled) masked patches.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
            plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
            the self-attention heads.
        reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, height, width, hidden_size)`. Hidden-states of the model at the output of each layer
            plus the initial embedding outputs reshaped to include the spatial dimensions.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    mask: torch.LongTensor = None
    ids_restore: torch.LongTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None


# Taken from https://github.com/facebookresearch/hiera/blob/main/hiera/hiera_utils.py#L73
def conv_nd(n: int) -> nn.Module:
    """
    Returns a conv with nd (e.g., Conv2d for n=2). Work up to n=3.
    If you wanted a 4d Hiera, you could probably just implement this for n=4. (no promises)
    """
    return [nn.Identity, nn.Conv1d, nn.Conv2d, nn.Conv3d][n]


# Taken from https://github.com/facebookresearch/hiera/blob/main/hiera/hiera_utils.py#L81
def do_pool(x: torch.Tensor, stride: int) -> torch.Tensor:
    # Refer to `Unroll` to see how this performs a maxpool-Nd
    return x.view(x.shape[0], stride, -1, x.shape[-1]).max(dim=1).values


class HieraPatchEmbeddings(nn.Module):
    """
    This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
    `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
    Transformer.
    """

    def __init__(self, config, is_mae: bool = False):
        super().__init__()

        # Support any number of spatial dimensions
        self.spatial_dims = len(config.patch_kernel)
        if self.spatial_dims not in (2, 3):
            raise ValueError(
                f"The number of dimensions of the input image should be 2 or 3, but got {self.spatial_dims}."
            )
        self.num_channels = config.num_channels
        self.image_size = config.input_size[-2:]
        self.tokens_spatial_shape = [i // s for i, s in zip(config.input_size, config.patch_stride)]
        self.mask_spatial_shape = [i // s for i, s in zip(self.tokens_spatial_shape, config.masked_unit_size)]
        self.mask_ratio = config.mask_ratio
        self.is_mae = is_mae

        self.projection = conv_nd(self.spatial_dims)(
            self.num_channels,
            config.embed_dim,
            kernel_size=config.patch_kernel,
            stride=config.patch_stride,
            padding=config.patch_padding,
        )

    def masked_conv(self, pixel_values: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        """Zero-out the masked regions of the input before conv.
        Prevents leakage of masked regions when using overlapping kernels.
        """
        if mask is None:
            return self.projection(pixel_values)

        target_size = pixel_values.shape[2:]
        # Reshape mask to (batch_size, 1, mask_unit_height, mask_unit_width)
        mask = mask.view(pixel_values.shape[0], 1, *self.mask_spatial_shape)

        if len(mask.shape[2:]) != len(target_size):
            raise ValueError(
                f"The length of the spatial dimensions of the mask should match the one from input image, but got {len(mask.shape[2:])} and {len(target_size)}."
            )

        if mask.shape[2:] != target_size:
            mask = nn.functional.interpolate(mask, size=target_size)

        return self.projection(pixel_values * mask.bool())

    def random_masking(self, pixel_values, noise=None):
        """
        Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random
        noise.

        Args:
            pixel_values (`torch.LongTensor` of shape `(batch_size, num_channels, height, width)`)
            noise (`torch.FloatTensor` of shape `(batch_size, num_mask_units)`, *optional*) which is
                mainly used for testing purposes to control randomness and maintain the reproducibility
        """
        batch_size = pixel_values.shape[0]
        # Tokens selected for masking at mask unit level
        num_windows = math.prod(self.mask_spatial_shape)
        len_keep = int(num_windows * (1 - self.mask_ratio))

        if noise is None:
            noise = torch.rand(batch_size, num_windows, device=pixel_values.device)

        # Sort noise for each sample
        ids_shuffle = torch.argsort(noise, dim=1)
        # ascend: small is keep, large is remove
        ids_restore = torch.argsort(ids_shuffle, dim=1)

        # Generate the binary mask: 1 is *keep*, 0 is *remove*
        # Note this is opposite to original MAE
        mask = torch.zeros([batch_size, num_windows], device=pixel_values.device)
        mask[:, :len_keep] = 1
        # Unshuffle to get the binary mask
        mask = torch.gather(mask, dim=1, index=ids_restore)

        return mask, ids_restore

    def forward(
        self,
        pixel_values: torch.Tensor,
        noise: Optional[torch.FloatTensor] = None,
        interpolate_pos_encoding: bool = False,
    ) -> torch.Tensor:
        num_channels = pixel_values.shape[1]
        height, width = pixel_values.shape[-2:]

        if num_channels != self.num_channels:
            raise ValueError(
                "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
                f" Expected {self.num_channels} but got {num_channels}."
            )

        if not interpolate_pos_encoding:
            if height != self.image_size[0] or width != self.image_size[1]:
                raise ValueError(
                    f"Input image size ({height}*{width}) doesn't match model"
                    f" ({self.image_size[0]}*{self.image_size[1]})."
                )

        (mask, ids_restore) = self.random_masking(pixel_values, noise=noise) if self.is_mae else (None, None)

        embeddings = self.masked_conv(pixel_values, mask)
        embeddings = embeddings.flatten(2).transpose(2, 1)

        return embeddings, mask, ids_restore


class HieraEmbeddings(nn.Module):
    """
    Construct position and patch embeddings.
    """

    def __init__(self, config: HieraConfig, is_mae: bool = False) -> None:
        super().__init__()
        self.patch_stride = config.patch_stride
        self.tokens_spatial_shape = [i // s for i, s in zip(config.input_size, config.patch_stride)]
        self.mask_spatial_shape = [i // s for i, s in zip(self.tokens_spatial_shape, config.masked_unit_size)]
        self.num_tokens = math.prod(self.tokens_spatial_shape)
        self.sep_pos_embed = config.sep_pos_embed
        self.is_mae = is_mae

        self.patch_embeddings = HieraPatchEmbeddings(config, is_mae=is_mae)

        if self.sep_pos_embed:
            self.position_embeddings_spatial = nn.Parameter(
                torch.zeros(
                    1,
                    self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2],
                    config.embed_dim,
                )
            )
            self.position_embeddings_temporal = nn.Parameter(
                torch.zeros(1, self.tokens_spatial_shape[0], config.embed_dim)
            )
        else:
            self.position_embeddings = nn.Parameter(torch.zeros(1, self.num_tokens, config.embed_dim))

    def interpolate_pos_encoding(
        self, embeddings: torch.Tensor, pos_embeds: torch.Tensor, height: int, width: int
    ) -> torch.Tensor:
        """
        This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
        resolution images.

        Adapted from:
        https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
        """

        num_patches = embeddings.shape[1]
        num_positions = pos_embeds.shape[1]
        if num_patches == num_positions and height == width:
            return pos_embeds
        dim = embeddings.shape[-1]
        h0 = height // self.patch_stride[0] if not self.sep_pos_embed else height // self.patch_stride[1]
        w0 = width // self.patch_stride[1] if not self.sep_pos_embed else width // self.patch_stride[2]
        # we add a small number to avoid floating point error in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        h0, w0 = h0 + 0.1, w0 + 0.1
        pos_embeds = pos_embeds.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
        pos_embeds = pos_embeds.permute(0, 3, 1, 2)
        pos_embeds = nn.functional.interpolate(
            pos_embeds,
            scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
            mode="bicubic",
            align_corners=False,
        )
        if int(h0) != pos_embeds.shape[-2] or int(w0) != pos_embeds.shape[-1]:
            raise ValueError("The interpolated position encoding does not have the right size")
        pos_embeds = pos_embeds.permute(0, 2, 3, 1).view(1, -1, dim)
        return pos_embeds

    def get_position_embedding(
        self, embeddings: torch.Tensor, height: int, width: int, interpolate_pos_encoding: bool
    ) -> torch.Tensor:
        if self.sep_pos_embed:
            spatial = self.position_embeddings_spatial
            spatial = (
                self.interpolate_pos_encoding(embeddings, spatial, height, width)
                if interpolate_pos_encoding
                else spatial
            )
            spatial = spatial.repeat(1, self.tokens_spatial_shape[0], 1)

            temporal = torch.repeat_interleave(
                self.position_embeddings_temporal,
                self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2],
                dim=1,
            )

            return spatial + temporal
        else:
            position_embeddings = self.position_embeddings
            position_embeddings = (
                self.interpolate_pos_encoding(embeddings, position_embeddings, height, width)
                if interpolate_pos_encoding
                else position_embeddings
            )
            return position_embeddings

    def forward(
        self,
        pixel_values: torch.Tensor,
        noise: Optional[torch.FloatTensor] = None,
        interpolate_pos_encoding: bool = False,
    ) -> torch.Tensor:
        if len(self.tokens_spatial_shape) == 2:
            batch_size, num_channels, height, width = pixel_values.shape
        else:
            batch_size, num_channels, depth, height, width = pixel_values.shape

        embeddings, mask, ids_restore = self.patch_embeddings(
            pixel_values, noise=noise, interpolate_pos_encoding=interpolate_pos_encoding
        )

        embeddings = embeddings + self.get_position_embedding(embeddings, height, width, interpolate_pos_encoding)

        return embeddings, mask, ids_restore


class HieraMaskUnitAttention(nn.Module):
    """
    Computes either Mask Unit or Global Attention. Also is able to perform q pooling.

    Note: this assumes the tokens have already been flattened and unrolled into mask units.
    """

    def __init__(
        self,
        dim: int,
        dim_out: int,
        num_heads: int,
        query_stride: int = 1,
        window_size: int = 0,
        use_mask_unit_attn: bool = False,
    ):
        super().__init__()

        self.dim = dim
        self.dim_out = dim_out
        self.num_heads = num_heads
        self.query_stride = query_stride

        self.head_dim = dim_out // num_heads
        self.scale = (self.head_dim) ** -0.5

        self.qkv = nn.Linear(dim, 3 * dim_out)
        self.proj = nn.Linear(dim_out, dim_out)

        self.window_size = window_size
        self.use_mask_unit_attn = use_mask_unit_attn

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: bool = False,
    ) -> torch.Tensor:
        """Input should be of shape [batch, tokens, channels]."""
        batch_size, seq_len, _ = hidden_states.shape

        num_windows = 1
        if self.use_mask_unit_attn:
            num_windows = seq_len // (self.query_stride * self.window_size)

        qkv = self.qkv(hidden_states)
        qkv = qkv.reshape(batch_size, -1, num_windows, 3, self.num_heads, self.head_dim)
        qkv = qkv.permute(3, 0, 4, 2, 1, 5)

        query, key, value = qkv.unbind(0)

        if self.query_stride > 1:
            # Refer to Unroll to see how this performs a maxpool-Nd
            query = query.view(batch_size, self.num_heads, num_windows, self.query_stride, -1, self.head_dim)
            query = query.max(dim=3).values

        attn_weights = (query * self.scale) @ key.transpose(-1, -2)
        attn_weights = attn_weights.softmax(dim=-1)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        attn_output = attn_weights @ value
        attn_output = attn_output.transpose(1, 3).reshape(batch_size, -1, self.dim_out)
        attn_output = self.proj(attn_output)

        return (attn_output, attn_weights) if output_attentions else (attn_output, None)


# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
    however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
    layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
    argument.
    """
    if drop_prob == 0.0 or not training:
        return input
    keep_prob = 1 - drop_prob
    shape = (input.shape[0],) + (1,) * (input.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
    random_tensor.floor_()  # binarize
    output = input.div(keep_prob) * random_tensor
    return output


# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Hiera
class HieraDropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob: Optional[float] = None) -> None:
        super().__init__()
        self.drop_prob = drop_prob

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return drop_path(hidden_states, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return "p={}".format(self.drop_prob)


class HieraMlp(nn.Module):
    def __init__(self, config, dim: int):
        super().__init__()
        self.config = config
        self.activation_fn = ACT2FN[config.hidden_act]
        self.fc1 = nn.Linear(dim, int(dim * config.mlp_ratio))
        self.fc2 = nn.Linear(int(dim * config.mlp_ratio), dim)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.fc2(hidden_states)
        return hidden_states


class HieraLayer(nn.Module):
    def __init__(
        self,
        config,
        dim: int,
        dim_out: int,
        num_heads: int,
        drop_path: float = 0.0,
        query_stride: int = 1,
        window_size: int = 0,
        use_mask_unit_attn: bool = False,
    ):
        super().__init__()

        self.dim = dim
        self.dim_out = dim_out
        self.query_stride = query_stride

        self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
        self.attn = HieraMaskUnitAttention(dim, dim_out, num_heads, query_stride, window_size, use_mask_unit_attn)

        self.layernorm_after = nn.LayerNorm(dim_out, eps=config.layer_norm_eps)
        self.mlp = HieraMlp(config, dim_out)

        self.drop_path = HieraDropPath(drop_path) if drop_path > 0 else nn.Identity()
        if dim != dim_out:
            self.proj = nn.Linear(dim, dim_out)

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: bool = False,
    ) -> torch.Tensor:
        batch_size, seq_len, _ = hidden_states.shape
        # Attention + Q Pooling
        hidden_states_norm = self.layernorm_before(hidden_states)
        if self.dim != self.dim_out:
            hidden_states = self.proj(hidden_states_norm)
            # Refer to `HieraUnroll` to see how this performs a maxpool-Nd
            hidden_states = hidden_states.view(batch_size, self.query_stride, -1, self.dim_out).max(dim=1).values

        (hidden_states_norm, attn_weights) = self.attn(
            hidden_states_norm, head_mask, output_attentions=output_attentions
        )
        hidden_states = hidden_states + self.drop_path(hidden_states_norm)

        residual = hidden_states
        hidden_states = self.layernorm_after(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + self.drop_path(hidden_states)

        return (hidden_states, attn_weights)


class HieraStage(nn.Module):
    def __init__(
        self,
        config,
        depth: int,
        dim: int,
        dim_out: int,
        num_heads: int,
        drop_path: List[float],
        query_stride: List[int],
        window_size: int,
        use_mask_unit_attn: bool,
        stage_num: Optional[int] = None,
    ) -> None:
        super().__init__()
        # we need to know if the previous stage used masked attention
        # mask unit or global attention.
        # lag by 1 layer, so that global attention,
        # applied post pooling on lower resolution
        previous_stage_used_masked_attention = False
        if stage_num is not None:
            previous_stage_used_masked_attention = config.masked_unit_attention[stage_num - 1 if stage_num > 0 else 0]
        self.layers = nn.ModuleList(
            [
                HieraLayer(
                    config=config,
                    dim=dim if i == 0 else dim_out,
                    dim_out=dim_out,
                    num_heads=num_heads,
                    drop_path=drop_path[i],
                    query_stride=query_stride[i],
                    window_size=window_size,
                    use_mask_unit_attn=use_mask_unit_attn or (previous_stage_used_masked_attention and i == 0),
                )
                for i in range(depth)
            ]
        )

    def forward(
        self, hidden_states: torch.Tensor, head_mask: Optional[torch.FloatTensor], output_attentions: bool = False
    ) -> torch.Tensor:
        for i, layer_module in enumerate(self.layers):
            layer_head_mask = head_mask[i] if head_mask is not None else None
            (hidden_states, attn_weights) = layer_module(
                hidden_states, layer_head_mask, output_attentions=output_attentions
            )

        return hidden_states, attn_weights


def undo_windowing(hidden_states: torch.Tensor, shape: List[int], mask_unit_shape: List[int]) -> torch.Tensor:
    """
    Restore spatial organization by undoing windowed organization of mask units.
    """
    num_dims = len(shape)
    batch_size, hidden_size = hidden_states.shape[0], hidden_states.shape[-1]
    # From: [batch_size, num_mask_unit_height*num_#mask_unit_wdith, mask_unit_height, mask_unit_width, hidden_size]
    # To: [batch_size, num_mask_unit_height, num_mask_unit_width, mask_unit_height, mask_unit_width, hidden_size]
    num_mask_units = [s // mu for s, mu in zip(shape, mask_unit_shape)]
    hidden_states = hidden_states.view(batch_size, *num_mask_units, *mask_unit_shape, hidden_size)

    # From: [batch_size, num_mask_unit_height, num_mask_unit_width, mask_unit_height, mask_unit_width, hidden_size]
    # To: [batch_size, num_mask_unit_height*mask_unit_height, num_mask_unit_width*mask_unit_width, hidden_size]
    permute = (
        [0]
        + sum(
            [list(p) for p in zip(range(1, 1 + num_dims), range(1 + num_dims, 1 + 2 * num_dims))],
            [],
        )
        + [len(hidden_states.shape) - 1]
    )
    hidden_states = hidden_states.permute(permute).reshape(batch_size, *shape, hidden_size)

    return hidden_states


class HieraEncoder(nn.Module):
    def __init__(self, config: HieraConfig) -> None:
        super().__init__()
        self.config = config

        # stochastic depth decay rule
        dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
        # query strides rule
        stage_ends = [sum(config.depths[:i]) - 1 for i in range(1, len(config.depths) + 1)]
        query_pool_layer = [stage_end + 1 for stage_end in stage_ends[: config.num_query_pool]]
        query_strides = [
            math.prod(config.query_stride) if i in query_pool_layer else 1 for i in range(sum(config.depths))
        ]

        # Transformer blocks
        self.stages = nn.ModuleList()
        embed_dim = config.embed_dim

        for idx_stage, depth in enumerate(config.depths):
            dim_out = int(config.embed_dim * config.embed_dim_multiplier**idx_stage)

            stage = HieraStage(
                config=config,
                depth=depth,
                dim=embed_dim,
                dim_out=dim_out,
                num_heads=int(config.initial_num_heads * config.num_head_multiplier**idx_stage),
                drop_path=dpr[sum(config.depths[:idx_stage]) : sum(config.depths[: idx_stage + 1])],
                query_stride=query_strides[sum(config.depths[:idx_stage]) : sum(config.depths[: idx_stage + 1])],
                window_size=int(math.prod(config.masked_unit_size) * math.prod(config.query_stride) ** -idx_stage),
                use_mask_unit_attn=config.masked_unit_attention[idx_stage],
                stage_num=idx_stage,
            )

            embed_dim = dim_out
            self.stages.append(stage)

        # Setting reroll schedule
        # The first stage has to reverse everything
        # The next stage has to reverse all but the first unroll, etc.
        stage_size = [i // s for i, s in zip(config.input_size, config.patch_stride)]
        unroll_schedule = [config.query_stride] * len(config.depths[:-1])

        self.schedule = {}
        for idx_stage in range(len(config.depths)):
            self.schedule[idx_stage] = unroll_schedule, stage_size
            if idx_stage < config.num_query_pool:
                stage_size = [i // s for i, s in zip(stage_size, config.query_stride)]
                unroll_schedule = unroll_schedule[1:]

        self.gradient_checkpointing = False

    def reroll(
        self, hidden_states: torch.Tensor, stage_idx: int, mask: Optional[torch.BoolTensor] = None
    ) -> torch.Tensor:
        """
        Roll the given tensor back up to spatial order assuming it's from the given block.

        If no mask is provided returns:
            - [batch_size, height, width, hidden_size] for 2d
            - [batch_size, frames, height, width, hidden_size] for 3d
        If a mask is provided returns:
            - [batch_size, num_mask_units, mask_unit_height, mask_unit_width, hidden_size] for 2d
        """
        schedule, size = self.schedule[stage_idx]
        batch_size, seq_len, hidden_size = hidden_states.shape

        num_dim = len(size)
        mask_unit_shape = [1] * num_dim

        for strides in schedule:
            # Extract the current patch from seq_len
            hidden_states = hidden_states.view(
                batch_size, *strides, seq_len // math.prod(strides), *mask_unit_shape, hidden_size
            )

            # Move that patch into the current MU
            # Example in 2d:
            # Input: [batch_size, stride, stride, seq_len//(stride*stride), mask_unit_height, mask_unit_width, hidden_size]
            # Output: [batch_size, seq_len//(stride*stride), stride, mask_unit_height, stride, mask_unit_width, hidden_size]
            L = len(hidden_states.shape)
            permute = (
                [0, 1 + num_dim]
                + sum(
                    [list(p) for p in zip(range(1, 1 + num_dim), range(1 + num_dim + 1, L - 1))],
                    [],
                )
                + [L - 1]
            )
            hidden_states = hidden_states.permute(permute)

            # Reshape to [batch_size, seq_len//(stride*stride), *mask_units, hidden_size]
            for i in range(num_dim):
                mask_unit_shape[i] *= strides[i]
            hidden_states = hidden_states.reshape(batch_size, -1, *mask_unit_shape, hidden_size)
            seq_len = hidden_states.shape[1]

        # Current shape (e.g., 2d: [batch_size, #num_mask_units_height*#num_mask_units_width, mask_unit_height, mask_unit_width, hidden_size])
        hidden_states = hidden_states.view(batch_size, seq_len, *mask_unit_shape, hidden_size)

        # If masked, return [batch_size, num_mask_units, mask_unit_height, mask_unit_width, hidden_size]
        if mask is not None:
            return hidden_states

        # If not masked, we can return [batch_size, height, width, hidden_size]
        hidden_states = undo_windowing(hidden_states, size, mask_unit_shape)

        return hidden_states

    def forward(
        self,
        hidden_states: torch.Tensor,
        mask: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ) -> Union[tuple, BaseModelOutput]:
        all_hidden_states = () if output_hidden_states else None
        all_reshaped_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)
            reshaped_hidden_states = self.reroll(hidden_states, stage_idx=0, mask=mask)
            all_reshaped_hidden_states = all_reshaped_hidden_states + (reshaped_hidden_states,)

        for i, stage_module in enumerate(self.stages):
            layer_head_mask = head_mask[i] if head_mask is not None else None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    stage_module.__call__, hidden_states, layer_head_mask, output_attentions
                )
            else:
                layer_outputs = stage_module(hidden_states, layer_head_mask, output_attentions)

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)
                reshaped_hidden_states = self.reroll(hidden_states, stage_idx=i, mask=mask)
                all_reshaped_hidden_states = all_reshaped_hidden_states + (reshaped_hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return HieraEncoderOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            reshaped_hidden_states=all_reshaped_hidden_states,
        )


def unroll(hidden_states: torch.Tensor, size: List[int], schedule: List[List[int]]) -> torch.Tensor:
    """
    Reorders the tokens such that patches are contiguous in memory.
    E.g., given [batch_size, (height, width), hidden_size] and stride of (stride, stride), this will re-order the tokens as
    [batch_size, (stride, stride, height // stride, width // stride), hidden_size]

    This allows operations like Max2d to be computed as x.view(batch_size, stride*stride, -1, hidden_size).max(dim=1).
    Not only is this faster, but it also makes it easy to support inputs of arbitrary
    dimensions in addition to patch-wise sparsity.

    Performing this operation multiple times in sequence puts entire windows as contiguous
    in memory. For instance, if you applied the stride (2, 2) 3 times, entire windows of
    size 8x8 would be contiguous in memory, allowing operations like mask unit attention
    computed easily and efficiently, while also allowing max to be applied sequentially.

    Note: This means that intermediate values of the model are not in height x width order, so they
    need to be re-rolled if you want to use the intermediate values as a height x width feature map.
    The last block of the network is fine though, since by then the strides are all consumed.
    """
    batch_size, _, hidden_size = hidden_states.shape

    current_size = size
    hidden_states = hidden_states.view(*([batch_size] + current_size + [hidden_size]))

    for strides in schedule:
        # Move patches with the given strides to the batch dimension

        # Create a view of the tensor with the patch stride as separate dims
        # For example in 2d: [batch_size, height // stride, stride, width // stride, stride, C]
        current_size = [i // s for i, s in zip(current_size, strides)]
        # initialize new_shape with [height // stride, stride, width // stride, stride]
        new_shape = [item for pair in zip(current_size, strides) for item in pair]
        # add batch_size and hidden_size to new_shape
        new_shape = [batch_size] + new_shape + [hidden_size]
        hidden_states = hidden_states.view(new_shape)

        # Move the patch stride into the batch dimension
        # For example in 2d: [batch_size, stride, stride, height // stride, width // stride, hidden_size]
        num_dims = len(new_shape)
        permute = [0] + list(range(2, num_dims - 1, 2)) + list(range(1, num_dims - 1, 2)) + [num_dims - 1]
        hidden_states = hidden_states.permute(permute)

        # Now finally flatten the relevant dims into the batch dimension
        hidden_states = hidden_states.flatten(0, len(strides))
        batch_size *= math.prod(strides)

    hidden_states = hidden_states.reshape(-1, math.prod(size), hidden_size)
    return hidden_states


class HieraPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = HieraConfig
    base_model_prefix = "hiera"
    main_input_name = "pixel_values"
    supports_gradient_checkpointing = True

    def _init_weights(self, module) -> None:
        """Initialize the weights"""
        std = self.config.initializer_range

        if isinstance(module, HieraEmbeddings):
            if self.config.sep_pos_embed:
                nn.init.trunc_normal_(module.position_embeddings_spatial, std=std)
                nn.init.trunc_normal_(module.position_embeddings_temporal, std=std)
            else:
                nn.init.trunc_normal_(module.position_embeddings, std=std)

        elif isinstance(module, HieraDecoder):
            nn.init.trunc_normal_(module.mask_token, std=std)
            nn.init.trunc_normal_(module.decoder_position_embeddings, std=std)

        elif isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d)):
            nn.init.trunc_normal_(module.weight, std=std)
            if module.bias is not None:
                nn.init.constant_(module.bias, std)

        elif isinstance(module, nn.LayerNorm):
            nn.init.constant_(module.bias, std)
            nn.init.constant_(module.weight, self.config.layer_norm_init)


HIERA_START_DOCSTRING = r"""
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
    as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`HieraConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

HIERA_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BitImageProcessor.__call__`]
            for details.

        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        interpolate_pos_encoding (`bool`, *optional*):
            Whether to interpolate the pre-trained position encodings.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


class HieraPooler(nn.Module):
    def __init__(self, config: HieraConfig):
        super().__init__()
        num_features = int(config.embed_dim * config.embed_dim_multiplier ** (len(config.depths) - 1))
        self.layernorm = nn.LayerNorm(num_features, eps=config.layer_norm_eps)
        self.pooler = nn.AdaptiveAvgPool1d(1)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = hidden_states.transpose(1, 2)
        pooled_output = self.pooler(hidden_states)
        pooled_output = torch.flatten(pooled_output, 1)
        pooled_output = self.layernorm(pooled_output)
        return pooled_output


@add_start_docstrings(
    "The bare Hiera Model transformer outputting raw hidden-states without any specific head on top.",
    HIERA_START_DOCSTRING,
    """
        add_pooling_layer (`bool`, *optional*, defaults to `True`):
                Whether or not to apply pooling layer.
        is_mae (`bool`, *optional*, defaults to `False`):
                Whether or not to run the model on MAE mode.
    """,
)
class HieraModel(HieraPreTrainedModel):
    def __init__(self, config: HieraConfig, add_pooling_layer: bool = True, is_mae: bool = False):
        super().__init__(config)
        self.num_features = int(config.embed_dim * config.embed_dim_multiplier ** (len(config.depths) - 1))

        self.embeddings = HieraEmbeddings(config, is_mae=is_mae)
        self.encoder = HieraEncoder(config)

        self.unroll_size = [i // s for i, s in zip(config.input_size, config.patch_stride)]
        self.unroll_schedule = [config.query_stride] * len(config.depths[:-1])

        self.pooler = HieraPooler(config) if add_pooling_layer else None

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> HieraPatchEmbeddings:
        return self.embeddings.patch_embeddings

    def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(HIERA_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=HieraModelOutput,
        config_class=_CONFIG_FOR_DOC,
        modality="vision",
        expected_output=_EXPECTED_OUTPUT_SHAPE,
    )
    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        noise: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        interpolate_pos_encoding: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        r"""
        noise (`torch.FloatTensor` of shape `(batch_size, num_mask_units)`, *optional*) which is
                mainly used for testing purposes to control randomness and maintain the reproducibility
                when is_mae is set to True.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, len(self.config.depths))

        # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?)
        expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype
        if pixel_values.dtype != expected_dtype:
            pixel_values = pixel_values.to(expected_dtype)

        embedding_output, mask, ids_restore = self.embeddings(
            pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, noise=noise
        )

        hidden_states = unroll(embedding_output, self.unroll_size, self.unroll_schedule)

        # Discard masked tokens if mask is provided
        if mask is not None:
            mask_unit_area = math.prod(self.config.masked_unit_size)
            batch_size, _, hidden_size = hidden_states.shape
            positions = mask.unsqueeze(-1).tile(1, mask_unit_area, hidden_size)
            positions = positions.bool()
            hidden_states = hidden_states[positions]
            hidden_states = hidden_states.view(batch_size, -1, hidden_size)

        encoder_outputs = self.encoder(
            hidden_states,
            mask=mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = None
        if self.pooler is not None:
            pooled_output = self.pooler(sequence_output)

        if not return_dict:
            head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
            head_outputs = head_outputs + (mask, ids_restore) if mask is not None else head_outputs
            return head_outputs + encoder_outputs[1:]

        return HieraModelOutput(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            mask=mask,
            ids_restore=ids_restore,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
        )


class HieraDecoder(nn.Module):
    def __init__(self, config: HieraConfig):
        super().__init__()
        num_features = int(config.embed_dim * config.embed_dim_multiplier ** (len(config.depths) - 1))
        self.tokens_spatial_shape = [i // s for i, s in zip(config.input_size, config.patch_stride)]
        self.tokens_spatial_shape_final = [
            i // s ** (config.num_query_pool) for i, s in zip(self.tokens_spatial_shape, config.query_stride)
        ]
        self.mask_unit_spatial_shape_final = [
            i // s ** (config.num_query_pool) for i, s in zip(config.masked_unit_size, config.query_stride)
        ]

        self.decoder_embeddings = nn.Linear(num_features, config.decoder_embed_dim)

        self.mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_embed_dim))

        self.decoder_position_embeddings = nn.Parameter(
            torch.zeros(1, math.prod(self.tokens_spatial_shape_final), config.decoder_embed_dim)
        )

        self.decoder_block = HieraStage(
            config=config,
            dim=config.decoder_embed_dim,
            dim_out=config.decoder_embed_dim,
            num_heads=config.decoder_num_heads,
            depth=config.decoder_depth,
            use_mask_unit_attn=False,
            drop_path=[0.0] * config.decoder_depth,
            query_stride=[1] * config.decoder_depth,
            window_size=0,
        )

        self.decoder_norm = nn.LayerNorm(config.decoder_embed_dim, eps=config.layer_norm_eps)

        # patch stride of prediction
        self.pred_stride = config.patch_stride[-1] * (config.query_stride[-1] ** config.num_query_pool)
        pred_dim = (self.pred_stride ** len(config.query_stride)) * config.num_channels

        self.decoder_pred = nn.Linear(config.decoder_embed_dim, pred_dim)

    def forward(
        self,
        encoder_hidden_states: torch.Tensor,
        mask: torch.BoolTensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> torch.Tensor:
        # Embed tokens
        hidden_states = self.decoder_embeddings(encoder_hidden_states)

        # Combine visible and mask tokens

        # hidden_states : [batch_size, num_mask_units_visible, *mask_unit_spatial_shape_final, decoder_embed_dim]
        # mask: [batch_size, num_mask_units]
        decoder_hidden_states = torch.zeros(
            *mask.shape, *hidden_states.shape[2:], device=hidden_states.device, dtype=hidden_states.dtype
        )
        mask_tokens = self.mask_token.view((1,) * (len(mask.shape) + len(hidden_states.shape[2:-1])) + (-1,))
        new_mask_shape = mask.shape + (1,) * len(hidden_states.shape[2:])
        mask = mask.reshape(new_mask_shape)
        expand_shape = (-1,) * 2 + hidden_states.shape[2:]
        mask = mask.expand(expand_shape)
        decoder_hidden_states[mask.bool()] = hidden_states.flatten()
        decoder_hidden_states = (1 - mask) * mask_tokens + mask * decoder_hidden_states

        # Get back spatial order
        hidden_states = undo_windowing(
            decoder_hidden_states,
            self.tokens_spatial_shape_final,
            self.mask_unit_spatial_shape_final,
        )
        mask = undo_windowing(
            mask[..., 0:1],
            self.tokens_spatial_shape_final,
            self.mask_unit_spatial_shape_final,
        )

        # Flatten
        hidden_states = hidden_states.reshape(hidden_states.shape[0], -1, hidden_states.shape[-1])
        mask = mask.view(hidden_states.shape[0], -1)

        # Add pos embed
        hidden_states = hidden_states + self.decoder_position_embeddings

        # Apply decoder blocks
        hidden_states, attn_weights = self.decoder_block(
            hidden_states, head_mask=head_mask, output_attentions=output_attentions
        )
        hidden_states = self.decoder_norm(hidden_states)

        # Predictor projection
        hidden_states = self.decoder_pred(hidden_states)

        return hidden_states, mask


class HieraMultiScaleHead(nn.Module):
    def __init__(self, config: HieraConfig):
        super().__init__()
        self.mask_unit_spatial_shape_final = [
            i // s ** (config.num_query_pool) for i, s in zip(config.masked_unit_size, config.query_stride)
        ]
        self.stage_dimensions = [
            int(config.embed_dim * config.embed_dim_multiplier**i) for i in range(len(config.depths))
        ]
        current_masked_unit_size = config.masked_unit_size
        self.multi_scale_fusion_heads = nn.ModuleList()

        for idx in range(config.num_query_pool):
            kernel = [i // s for i, s in zip(current_masked_unit_size, self.mask_unit_spatial_shape_final)]
            current_masked_unit_size = [i // s for i, s in zip(current_masked_unit_size, config.query_stride)]
            self.multi_scale_fusion_heads.append(
                conv_nd(len(config.query_stride))(
                    self.stage_dimensions[idx],
                    self.stage_dimensions[-1],
                    kernel_size=kernel,
                    stride=kernel,
                )
            )
        self.multi_scale_fusion_heads.append(nn.Identity())

    def apply_fusion_head(self, head: nn.Module, hidden_states: torch.Tensor) -> torch.Tensor:
        if isinstance(head, nn.Identity):
            return hidden_states

        batch_size, num_mask_units = hidden_states.shape[0:2]
        # From: [batch_size, num_mask_units, mask_unit_height, mask_unit_width, hidden_size]
        # To: head([batch_size * num_mask_units, hidden_size, mask_unit_height, mask_unit_width])
        permute = [0] + [len(hidden_states.shape) - 2] + list(range(1, len(hidden_states.shape) - 2))
        hidden_states = hidden_states.reshape(batch_size * num_mask_units, *hidden_states.shape[2:])
        hidden_states = hidden_states.permute(permute)
        hidden_states = head(hidden_states)

        # Restore original layout
        permute = [0] + list(range(2, len(hidden_states.shape))) + [1]
        hidden_states = hidden_states.permute(permute)
        hidden_states = hidden_states.reshape(
            batch_size, num_mask_units, *hidden_states.shape[1:-1], hidden_states.shape[-1]
        )
        return hidden_states

    def forward(self, feature_maps: List[torch.Tensor]) -> torch.Tensor:
        # Multi-scale fusion
        hidden_states = 0.0
        for head, feature_map in zip(self.multi_scale_fusion_heads, feature_maps):
            hidden_states = hidden_states + self.apply_fusion_head(head, feature_map)

        return hidden_states


@add_start_docstrings(
    """The Hiera Model transformer with the decoder on top for self-supervised pre-training.

    <Tip>

    Note that we provide a script to pre-train this model on custom data in our [examples
    directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).

    </Tip>
    """,
    HIERA_START_DOCSTRING,
)
class HieraForPreTraining(HieraPreTrainedModel):
    def __init__(self, config: HieraConfig) -> None:
        super().__init__(config)
        # Encoder
        self.hiera = HieraModel(config, add_pooling_layer=False, is_mae=True)
        self.encoder_norm = nn.LayerNorm(self.hiera.num_features, eps=config.layer_norm_eps)
        # Multi-scale fusion heads
        self.multiscale_fusion = HieraMultiScaleHead(config)
        # Decoder
        self.decoder = HieraDecoder(config)
        self.pred_stride = self.decoder.pred_stride

        # Initialize weights and apply final processing
        self.post_init()

    def get_pixel_label_2d(self, pixel_values: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
        # mask (boolean tensor): True means *masked*
        pixel_values = pixel_values.permute(0, 2, 3, 1)

        size = self.pred_stride
        label = pixel_values.unfold(1, size, size).unfold(2, size, size)
        label = label.flatten(1, 2).flatten(2)
        label = label[mask.bool()]
        if self.config.norm_pix_loss:
            mean = label.mean(dim=-1, keepdim=True)
            var = label.var(dim=-1, keepdim=True)
            label = (label - mean) / (var + 1.0e-6) ** 0.5

        return label

    def get_pixel_label_3d(self, pixel_values: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
        # mask (boolean tensor): True means *masked*
        pixel_values = pixel_values[:, :, :: self.patch_stride[0], :, :]

        size = self.pred_stride
        label = pixel_values.unfold(3, size, size).unfold(4, size, size)
        # Different from 2D
        label = label.permute(0, 2, 3, 4, 5, 6, 1)
        label = label.flatten(1, 3).flatten(2)
        label = label[mask.bool()]
        if self.config.norm_pix_loss:
            mean = label.mean(dim=-1, keepdim=True)
            var = label.var(dim=-1, keepdim=True)
            label = (label - mean) / (var + 1.0e-6) ** 0.5

        return label

    def forward_loss(self, pixel_values: torch.Tensor, logits: torch.Tensor, mask: torch.BoolTensor):
        # We invert the mask such that 1.0 is *masked*
        mask = 1 - mask
        if len(self.config.query_stride) == 2:
            label = self.get_pixel_label_2d(pixel_values, mask)
        elif len(self.config.query_stride) == 3:
            label = self.get_pixel_label_3d(pixel_values, mask)
        else:
            raise NotImplementedError("Only images and videos are supported")

        logits = logits[mask.bool()]
        loss = (logits - label) ** 2
        loss = loss.mean()

        return loss

    @add_start_docstrings_to_model_forward(HIERA_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=HieraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        noise: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        interpolate_pos_encoding: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple, HieraForPreTrainingOutput]:
        r"""
        noise (`torch.FloatTensor` of shape `(batch_size, num_mask_units)`, *optional*) which is
                mainly used for testing purposes to control randomness and maintain the reproducibility
                when is_mae is set to True.

        Returns:

        Examples:
        ```python
        >>> from transformers import AutoImageProcessor, HieraForPreTraining
        >>> import torch
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> image_processor = AutoImageProcessor.from_pretrained("EduardoPacheco/hiera-tiny-224-mae")
        >>> model = HieraForPreTraining.from_pretrained("EduardoPacheco/hiera-tiny-224-mae")

        >>> inputs = image_processor(images=image, return_tensors="pt")

        >>> outputs = model(**inputs)
        >>> logits = outputs.logits
        >>> list(logits.shape)
        [1, 196, 768]
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        outputs = self.hiera(
            pixel_values,
            noise=noise,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=True,
            interpolate_pos_encoding=interpolate_pos_encoding,
            return_dict=True,
        )

        feature_maps = outputs.reshaped_hidden_states
        mask = outputs.mask
        ids_to_restore = outputs.ids_restore
        # Take only the query pooled and last hidden states
        feature_maps = feature_maps[1 : self.hiera.config.num_query_pool + 1] + (feature_maps[-1],)
        fused_hidden_states = self.multiscale_fusion(feature_maps)
        fused_hidden_states = self.encoder_norm(fused_hidden_states)

        # Reconstruct pixel values
        logits, mask = self.decoder(
            fused_hidden_states,
            mask=mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
        )

        loss = self.forward_loss(pixel_values, logits, mask)

        if not return_dict:
            output = (logits, mask, ids_to_restore)
            if output_hidden_states:
                output = output + (outputs.hidden_states,)
            if output_attentions:
                output = output + (outputs.attentions,)
            if output_hidden_states:
                output = output + (outputs.reshaped_hidden_states,)
            return ((loss,) + output) if loss is not None else output

        return HieraForPreTrainingOutput(
            loss=loss,
            logits=logits,
            mask=mask,
            ids_restore=ids_to_restore,
            hidden_states=outputs.hidden_states if output_hidden_states else None,
            attentions=outputs.attentions,
            reshaped_hidden_states=outputs.reshaped_hidden_states if output_hidden_states else None,
        )


@add_start_docstrings(
    """
    Hiera Model transformer with an image classification head on top (a linear layer on top of the final hidden state with
    average pooling) e.g. for ImageNet.

    <Tip>

        Note that it's possible to fine-tune Hiera on higher resolution images than the ones it has been trained on, by
        setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
        position embeddings to the higher resolution.

    </Tip>
    """,
    HIERA_START_DOCSTRING,
)
class HieraForImageClassification(HieraPreTrainedModel):
    def __init__(self, config: HieraConfig) -> None:
        super().__init__(config)

        self.num_labels = config.num_labels
        self.hiera = HieraModel(config, add_pooling_layer=True, is_mae=False)

        # Classifier head
        self.classifier = (
            nn.Linear(self.hiera.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity()
        )

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(HIERA_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_IMAGE_CLASS_CHECKPOINT,
        output_type=HieraForImageClassificationOutput,
        config_class=_CONFIG_FOR_DOC,
        expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
    )
    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        interpolate_pos_encoding: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple, HieraForImageClassificationOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        outputs = self.hiera(
            pixel_values,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            interpolate_pos_encoding=interpolate_pos_encoding,
            return_dict=return_dict,
        )

        pooled_output = outputs[1]

        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[4:]
            return ((loss,) + output) if loss is not None else output

        return HieraForImageClassificationOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            reshaped_hidden_states=outputs.reshaped_hidden_states,
        )


@add_start_docstrings(
    """
    Hiera backbone, to be used with frameworks like DETR and MaskFormer.
    """,
    HIERA_START_DOCSTRING,
)
class HieraBackbone(HieraPreTrainedModel, BackboneMixin):
    def __init__(self, config: HieraConfig):
        super().__init__(config)
        super()._init_backbone(config)

        self.num_features = [config.embed_dim] + [
            int(config.embed_dim * config.embed_dim_multiplier**i) for i in range(len(config.depths))
        ]
        self.embeddings = HieraEmbeddings(config, is_mae=False)
        self.encoder = HieraEncoder(config)

        # Add layer norms to hidden states of out_features
        hidden_states_norms = {}
        for stage, num_channels in zip(self._out_features, self.channels):
            hidden_states_norms[stage] = nn.LayerNorm(num_channels)
        self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.patch_embeddings

    def forward(
        self,
        pixel_values: torch.Tensor,
        output_hidden_states: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> BackboneOutput:
        """
        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, AutoBackbone
        >>> import torch
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> processor = AutoImageProcessor.from_pretrained("EduardoPacheco/hiera-tiny-224")
        >>> model = AutoBackbone.from_pretrained(
        ...     "EduardoPacheco/hiera-tiny-224", out_features=["stage1", "stage2", "stage3", "stage4"]
        ... )

        >>> inputs = processor(image, return_tensors="pt")
        >>> outputs = model(**inputs)
        >>> feature_maps = outputs.feature_maps
        >>> list(feature_maps[-1].shape)
        [1, 768, 7, 7]
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions

        embedding_output, _, _ = self.embeddings(pixel_values)

        outputs = self.encoder(
            embedding_output,
            head_mask=None,
            output_attentions=output_attentions,
            output_hidden_states=True,
            return_dict=True,
        )

        hidden_states = outputs.reshaped_hidden_states

        feature_maps = ()
        for stage, hidden_state in zip(self.stage_names, hidden_states):
            if stage in self.out_features:
                batch_size, height, width, num_channels = hidden_state.shape
                hidden_state = hidden_state.view(batch_size, height * width, num_channels)
                hidden_state = self.hidden_states_norms[stage](hidden_state)
                hidden_state = hidden_state.view(batch_size, height, width, num_channels)
                hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
                feature_maps += (hidden_state,)

        if not return_dict:
            output = (feature_maps,)
            if output_hidden_states:
                output += (outputs.hidden_states,)
            return output

        return BackboneOutput(
            feature_maps=feature_maps,
            hidden_states=outputs.hidden_states if output_hidden_states else None,
            attentions=outputs.attentions,
        )
# %%