File size: 83,014 Bytes
822ac71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 |
#%%
# coding=utf-8
# Copyright 2024 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Hiera model."""
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
import transformers
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BackboneOutput,
BaseModelOutput,
BaseModelOutputWithPooling,
ImageClassifierOutput,
ModelOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from transformers.utils.backbone_utils import BackboneMixin
# coding=utf-8
# Copyright 2024 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Hiera model configuration"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfig
from transformers.utils import logging
from transformers.utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
HIERA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"EduardoPacheco/hiera-tiny-224": "https://huggingface.co./EduardoPacheco/hiera-tiny-224/resolve/main/config.json",
}
class HieraConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`HieraModel`]. It is used to instantiate an Hiera
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Hiera
[EduardoPacheco/hiera-base-224](https://huggingface.co./EduardoPacheco/hiera-base-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
embed_dim (`int`, *optional*, defaults to 96):
Dimensionality of patch embedding.
input_size (`list(int)`, *optional*, defaults to `[224, 224]`):
The size (resolution) of input in the format (height, width) for images
and (frames, height, width) for videos.
patch_kernel (`list(int)`, *optional*, defaults to `[7, 7]`):
The size (resolution) of each patch.
patch_stride (`list(int)`, *optional*, defaults to `[4, 4]`):
The stride of the patch.
patch_padding (`list(int)`, *optional*, defaults to `[3, 3]`):
The padding of the patch.
mlp_ratio (`float`, *optional*, defaults to 4.0):
The ratio of mlp hidden dim to embedding dim.
depths (`list(int)`, *optional*, defaults to `[2, 3, 16, 3]`):
Depth of each layer in the Transformer encoder.
initial_num_heads (`int`, *optional*, defaults to 1):
Initial number of attention heads in the first layer of the Transformer encoder.
num_head_multiplier (`float`, *optional*, defaults to 2.0):
The multiplier to the number of attention heads in each layer of the Transformer encoder.
embed_dim_multiplier (`float`, *optional*, defaults to 2.0):
The multiplier to the dimensionality of patch embedding in each layer of the Transformer encoder.
num_query_pool (`int`, *optional*, defaults to 3):
The number of query pool stages.
query_stride (`list(int)`, *optional*, defaults to `[2, 2]`):
The stride of the query pool.
masked_unit_size (`list(int)`, *optional*, defaults to `[8, 8]`):
The size of the masked unit.
masked_unit_attention (`list(bool)`, *optional*, defaults to `[True, True, False, False]`):
Whether to use masked unit attention in each layer of the Transformer encoder.
drop_path_rate (`float`, *optional*, defaults to 0.0):
The drop path rate.
sep_pos_embed (`bool`, *optional*, defaults to `False`):
Whether to use separate position embedding for temporal and spatial dimensions. Must be `True` for videos.
and `False` for images.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
`"selu"` and `"gelu_new"` are supported.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices and
the zero_initializer for initializing all bias vectors.
layer_norm_init (`float`, *optional*, defaults to 1.0):
The initial weight value for layer normalization layers.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
decoder_embed_dim (`int`, *optional*):
Dimensionality of decoder embeddings for MAE pretraining.
decoder_depth (`int`, *optional*):
Depth of the decoder for MAE pretraining.
decoder_num_heads (`int`, *optional*):
Number of attention heads in each layer of the decoder for MAE pretraining.
norm_pix_loss (`bool`, *optional*, defaults to `True`):
Whether to normalize the pixel loss by the number of pixels.
mask_ratio (`float`, *optional*, defaults to 0.6):
The ratio of masked tokens in the input.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
Example:
```python
>>> from transformers import HieraConfig, HieraModel
>>> # Initializing a Hiera hiera-base-patch16-224 style configuration
>>> configuration = HieraConfig()
>>> # Initializing a model (with random weights) from the hiera-base-patch16-224 style configuration
>>> model = HieraModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "hiera"
attribute_map = {"num_hidden_layers": "num_layers"}
def __init__(
self,
embed_dim=96,
input_size=[224, 224],
patch_kernel=[7, 7],
patch_stride=[4, 4],
patch_padding=[3, 3],
mlp_ratio=4.0,
depths=[2, 3, 16, 3],
initial_num_heads=1,
num_head_multiplier=2.0,
embed_dim_multiplier=2.0,
num_query_pool=3,
query_stride=[2, 2],
masked_unit_size=[8, 8],
masked_unit_attention=[True, True, False, False],
drop_path_rate=0.0,
sep_pos_embed=False,
num_channels=3,
hidden_act="gelu",
initializer_range=0.02,
layer_norm_init=1.0,
layer_norm_eps=1e-6,
decoder_embed_dim=None,
decoder_depth=None,
decoder_num_heads=None,
norm_pix_loss=True,
mask_ratio=0.6,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
if masked_unit_size[0] % query_stride[0] ** (len(depths) - 1) != 0:
raise ValueError(
f"masked_unit_size[0] ({masked_unit_size[0]}) must be divisible by query_stride[0] ({query_stride[0]}) "
f"raised to the power of the number of layers ({len(depths) - 1})"
)
if num_query_pool >= len(depths):
raise ValueError(
f"num_query_pool ({num_query_pool}) must be less than the number of layers ({len(depths)})"
)
self.embed_dim = embed_dim
self.input_size = input_size
self.patch_kernel = patch_kernel
self.patch_stride = patch_stride
self.patch_padding = patch_padding
self.mlp_ratio = mlp_ratio
self.depths = depths
self.num_layers = len(depths)
self.initial_num_heads = initial_num_heads
self.num_head_multiplier = num_head_multiplier
self.embed_dim_multiplier = embed_dim_multiplier
self.num_query_pool = num_query_pool
self.query_stride = query_stride
self.masked_unit_size = masked_unit_size
self.masked_unit_attention = masked_unit_attention
self.drop_path_rate = drop_path_rate
self.sep_pos_embed = sep_pos_embed
self.num_channels = num_channels
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.layer_norm_init = layer_norm_init
self.layer_norm_eps = layer_norm_eps
self.decoder_embed_dim = decoder_embed_dim
self.decoder_depth = decoder_depth
self.decoder_num_heads = decoder_num_heads
self.norm_pix_loss = norm_pix_loss
self.mask_ratio = mask_ratio
# we set the hidden_size attribute in order to make Hiera work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
self.hidden_size = int(embed_dim * embed_dim_multiplier ** (len(depths) - 1))
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
class HieraOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "HieraConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "EduardoPacheco/hiera-tiny-224"
_EXPECTED_OUTPUT_SHAPE = [1, 49, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "EduardoPacheco/hiera-tiny-224-in1k"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
HIERA_PRETRAINED_MODEL_ARCHIVE_LIST = [
"EduardoPacheco/hiera-tiny-224",
# See all Hiera models at https://huggingface.co./models?filter=hiera
]
@dataclass
class HieraEncoderOutput(ModelOutput):
"""
Hiera encoder's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. Thesre are the unrolled hidden states of the model.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, height, width, hidden_size)`. These are the reshaped and re-rolled hidden states of the model.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class HieraModelOutput(ModelOutput):
"""
Hiera model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Tensor indicating which patches are masked (0) and which are not (1).
ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Tensor containing the original index of the (shuffled) masked patches.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. These are the unrolled hidden states of the model.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, height, width, hidden_size)`. These are the reshaped and re-rolled hidden states of the model.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: Optional[torch.FloatTensor] = None
mask: torch.LongTensor = None
ids_restore: torch.LongTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class HieraForImageClassificationOutput(ImageClassifierOutput):
"""
Hiera image classification outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, `optional`):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
Prediction scores of the classification head (logits of the output layer).
hidden_states (`tuple(torch.FloatTensor)`, `optional`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. These are the unrolled hidden states of the model.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, `optional`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, `optional`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, height, width, hidden_size)`. These are the reshaped and re-rolled hidden states of the model.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class HieraForPreTrainingOutput(ModelOutput):
"""
Class for ViTMAEForPreTraining's outputs, with potential hidden states and attentions.
Args:
loss (`torch.FloatTensor` of shape `(1,)`):
Pixel reconstruction loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`):
Pixel reconstruction logits.
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Tensor indicating which patches are masked (0) and which are not (1).
ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Tensor containing the original index of the (shuffled) masked patches.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, height, width, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs reshaped to include the spatial dimensions.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
mask: torch.LongTensor = None
ids_restore: torch.LongTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
# Taken from https://github.com/facebookresearch/hiera/blob/main/hiera/hiera_utils.py#L73
def conv_nd(n: int) -> nn.Module:
"""
Returns a conv with nd (e.g., Conv2d for n=2). Work up to n=3.
If you wanted a 4d Hiera, you could probably just implement this for n=4. (no promises)
"""
return [nn.Identity, nn.Conv1d, nn.Conv2d, nn.Conv3d][n]
# Taken from https://github.com/facebookresearch/hiera/blob/main/hiera/hiera_utils.py#L81
def do_pool(x: torch.Tensor, stride: int) -> torch.Tensor:
# Refer to `Unroll` to see how this performs a maxpool-Nd
return x.view(x.shape[0], stride, -1, x.shape[-1]).max(dim=1).values
class HieraPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config, is_mae: bool = False):
super().__init__()
# Support any number of spatial dimensions
self.spatial_dims = len(config.patch_kernel)
if self.spatial_dims not in (2, 3):
raise ValueError(
f"The number of dimensions of the input image should be 2 or 3, but got {self.spatial_dims}."
)
self.num_channels = config.num_channels
self.image_size = config.input_size[-2:]
self.tokens_spatial_shape = [i // s for i, s in zip(config.input_size, config.patch_stride)]
self.mask_spatial_shape = [i // s for i, s in zip(self.tokens_spatial_shape, config.masked_unit_size)]
self.mask_ratio = config.mask_ratio
self.is_mae = is_mae
self.projection = conv_nd(self.spatial_dims)(
self.num_channels,
config.embed_dim,
kernel_size=config.patch_kernel,
stride=config.patch_stride,
padding=config.patch_padding,
)
def masked_conv(self, pixel_values: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Zero-out the masked regions of the input before conv.
Prevents leakage of masked regions when using overlapping kernels.
"""
if mask is None:
return self.projection(pixel_values)
target_size = pixel_values.shape[2:]
# Reshape mask to (batch_size, 1, mask_unit_height, mask_unit_width)
mask = mask.view(pixel_values.shape[0], 1, *self.mask_spatial_shape)
if len(mask.shape[2:]) != len(target_size):
raise ValueError(
f"The length of the spatial dimensions of the mask should match the one from input image, but got {len(mask.shape[2:])} and {len(target_size)}."
)
if mask.shape[2:] != target_size:
mask = nn.functional.interpolate(mask, size=target_size)
return self.projection(pixel_values * mask.bool())
def random_masking(self, pixel_values, noise=None):
"""
Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random
noise.
Args:
pixel_values (`torch.LongTensor` of shape `(batch_size, num_channels, height, width)`)
noise (`torch.FloatTensor` of shape `(batch_size, num_mask_units)`, *optional*) which is
mainly used for testing purposes to control randomness and maintain the reproducibility
"""
batch_size = pixel_values.shape[0]
# Tokens selected for masking at mask unit level
num_windows = math.prod(self.mask_spatial_shape)
len_keep = int(num_windows * (1 - self.mask_ratio))
if noise is None:
noise = torch.rand(batch_size, num_windows, device=pixel_values.device)
# Sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=1)
# ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# Generate the binary mask: 1 is *keep*, 0 is *remove*
# Note this is opposite to original MAE
mask = torch.zeros([batch_size, num_windows], device=pixel_values.device)
mask[:, :len_keep] = 1
# Unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return mask, ids_restore
def forward(
self,
pixel_values: torch.Tensor,
noise: Optional[torch.FloatTensor] = None,
interpolate_pos_encoding: bool = False,
) -> torch.Tensor:
num_channels = pixel_values.shape[1]
height, width = pixel_values.shape[-2:]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
f" Expected {self.num_channels} but got {num_channels}."
)
if not interpolate_pos_encoding:
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size[0]}*{self.image_size[1]})."
)
(mask, ids_restore) = self.random_masking(pixel_values, noise=noise) if self.is_mae else (None, None)
embeddings = self.masked_conv(pixel_values, mask)
embeddings = embeddings.flatten(2).transpose(2, 1)
return embeddings, mask, ids_restore
class HieraEmbeddings(nn.Module):
"""
Construct position and patch embeddings.
"""
def __init__(self, config: HieraConfig, is_mae: bool = False) -> None:
super().__init__()
self.patch_stride = config.patch_stride
self.tokens_spatial_shape = [i // s for i, s in zip(config.input_size, config.patch_stride)]
self.mask_spatial_shape = [i // s for i, s in zip(self.tokens_spatial_shape, config.masked_unit_size)]
self.num_tokens = math.prod(self.tokens_spatial_shape)
self.sep_pos_embed = config.sep_pos_embed
self.is_mae = is_mae
self.patch_embeddings = HieraPatchEmbeddings(config, is_mae=is_mae)
if self.sep_pos_embed:
self.position_embeddings_spatial = nn.Parameter(
torch.zeros(
1,
self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2],
config.embed_dim,
)
)
self.position_embeddings_temporal = nn.Parameter(
torch.zeros(1, self.tokens_spatial_shape[0], config.embed_dim)
)
else:
self.position_embeddings = nn.Parameter(torch.zeros(1, self.num_tokens, config.embed_dim))
def interpolate_pos_encoding(
self, embeddings: torch.Tensor, pos_embeds: torch.Tensor, height: int, width: int
) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Adapted from:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
num_patches = embeddings.shape[1]
num_positions = pos_embeds.shape[1]
if num_patches == num_positions and height == width:
return pos_embeds
dim = embeddings.shape[-1]
h0 = height // self.patch_stride[0] if not self.sep_pos_embed else height // self.patch_stride[1]
w0 = width // self.patch_stride[1] if not self.sep_pos_embed else width // self.patch_stride[2]
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
h0, w0 = h0 + 0.1, w0 + 0.1
pos_embeds = pos_embeds.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
pos_embeds = pos_embeds.permute(0, 3, 1, 2)
pos_embeds = nn.functional.interpolate(
pos_embeds,
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
mode="bicubic",
align_corners=False,
)
if int(h0) != pos_embeds.shape[-2] or int(w0) != pos_embeds.shape[-1]:
raise ValueError("The interpolated position encoding does not have the right size")
pos_embeds = pos_embeds.permute(0, 2, 3, 1).view(1, -1, dim)
return pos_embeds
def get_position_embedding(
self, embeddings: torch.Tensor, height: int, width: int, interpolate_pos_encoding: bool
) -> torch.Tensor:
if self.sep_pos_embed:
spatial = self.position_embeddings_spatial
spatial = (
self.interpolate_pos_encoding(embeddings, spatial, height, width)
if interpolate_pos_encoding
else spatial
)
spatial = spatial.repeat(1, self.tokens_spatial_shape[0], 1)
temporal = torch.repeat_interleave(
self.position_embeddings_temporal,
self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2],
dim=1,
)
return spatial + temporal
else:
position_embeddings = self.position_embeddings
position_embeddings = (
self.interpolate_pos_encoding(embeddings, position_embeddings, height, width)
if interpolate_pos_encoding
else position_embeddings
)
return position_embeddings
def forward(
self,
pixel_values: torch.Tensor,
noise: Optional[torch.FloatTensor] = None,
interpolate_pos_encoding: bool = False,
) -> torch.Tensor:
if len(self.tokens_spatial_shape) == 2:
batch_size, num_channels, height, width = pixel_values.shape
else:
batch_size, num_channels, depth, height, width = pixel_values.shape
embeddings, mask, ids_restore = self.patch_embeddings(
pixel_values, noise=noise, interpolate_pos_encoding=interpolate_pos_encoding
)
embeddings = embeddings + self.get_position_embedding(embeddings, height, width, interpolate_pos_encoding)
return embeddings, mask, ids_restore
class HieraMaskUnitAttention(nn.Module):
"""
Computes either Mask Unit or Global Attention. Also is able to perform q pooling.
Note: this assumes the tokens have already been flattened and unrolled into mask units.
"""
def __init__(
self,
dim: int,
dim_out: int,
num_heads: int,
query_stride: int = 1,
window_size: int = 0,
use_mask_unit_attn: bool = False,
):
super().__init__()
self.dim = dim
self.dim_out = dim_out
self.num_heads = num_heads
self.query_stride = query_stride
self.head_dim = dim_out // num_heads
self.scale = (self.head_dim) ** -0.5
self.qkv = nn.Linear(dim, 3 * dim_out)
self.proj = nn.Linear(dim_out, dim_out)
self.window_size = window_size
self.use_mask_unit_attn = use_mask_unit_attn
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: bool = False,
) -> torch.Tensor:
"""Input should be of shape [batch, tokens, channels]."""
batch_size, seq_len, _ = hidden_states.shape
num_windows = 1
if self.use_mask_unit_attn:
num_windows = seq_len // (self.query_stride * self.window_size)
qkv = self.qkv(hidden_states)
qkv = qkv.reshape(batch_size, -1, num_windows, 3, self.num_heads, self.head_dim)
qkv = qkv.permute(3, 0, 4, 2, 1, 5)
query, key, value = qkv.unbind(0)
if self.query_stride > 1:
# Refer to Unroll to see how this performs a maxpool-Nd
query = query.view(batch_size, self.num_heads, num_windows, self.query_stride, -1, self.head_dim)
query = query.max(dim=3).values
attn_weights = (query * self.scale) @ key.transpose(-1, -2)
attn_weights = attn_weights.softmax(dim=-1)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = attn_weights @ value
attn_output = attn_output.transpose(1, 3).reshape(batch_size, -1, self.dim_out)
attn_output = self.proj(attn_output)
return (attn_output, attn_weights) if output_attentions else (attn_output, None)
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Hiera
class HieraDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class HieraMlp(nn.Module):
def __init__(self, config, dim: int):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(dim, int(dim * config.mlp_ratio))
self.fc2 = nn.Linear(int(dim * config.mlp_ratio), dim)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class HieraLayer(nn.Module):
def __init__(
self,
config,
dim: int,
dim_out: int,
num_heads: int,
drop_path: float = 0.0,
query_stride: int = 1,
window_size: int = 0,
use_mask_unit_attn: bool = False,
):
super().__init__()
self.dim = dim
self.dim_out = dim_out
self.query_stride = query_stride
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.attn = HieraMaskUnitAttention(dim, dim_out, num_heads, query_stride, window_size, use_mask_unit_attn)
self.layernorm_after = nn.LayerNorm(dim_out, eps=config.layer_norm_eps)
self.mlp = HieraMlp(config, dim_out)
self.drop_path = HieraDropPath(drop_path) if drop_path > 0 else nn.Identity()
if dim != dim_out:
self.proj = nn.Linear(dim, dim_out)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: bool = False,
) -> torch.Tensor:
batch_size, seq_len, _ = hidden_states.shape
# Attention + Q Pooling
hidden_states_norm = self.layernorm_before(hidden_states)
if self.dim != self.dim_out:
hidden_states = self.proj(hidden_states_norm)
# Refer to `HieraUnroll` to see how this performs a maxpool-Nd
hidden_states = hidden_states.view(batch_size, self.query_stride, -1, self.dim_out).max(dim=1).values
(hidden_states_norm, attn_weights) = self.attn(
hidden_states_norm, head_mask, output_attentions=output_attentions
)
hidden_states = hidden_states + self.drop_path(hidden_states_norm)
residual = hidden_states
hidden_states = self.layernorm_after(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.drop_path(hidden_states)
return (hidden_states, attn_weights)
class HieraStage(nn.Module):
def __init__(
self,
config,
depth: int,
dim: int,
dim_out: int,
num_heads: int,
drop_path: List[float],
query_stride: List[int],
window_size: int,
use_mask_unit_attn: bool,
stage_num: Optional[int] = None,
) -> None:
super().__init__()
# we need to know if the previous stage used masked attention
# mask unit or global attention.
# lag by 1 layer, so that global attention,
# applied post pooling on lower resolution
previous_stage_used_masked_attention = False
if stage_num is not None:
previous_stage_used_masked_attention = config.masked_unit_attention[stage_num - 1 if stage_num > 0 else 0]
self.layers = nn.ModuleList(
[
HieraLayer(
config=config,
dim=dim if i == 0 else dim_out,
dim_out=dim_out,
num_heads=num_heads,
drop_path=drop_path[i],
query_stride=query_stride[i],
window_size=window_size,
use_mask_unit_attn=use_mask_unit_attn or (previous_stage_used_masked_attention and i == 0),
)
for i in range(depth)
]
)
def forward(
self, hidden_states: torch.Tensor, head_mask: Optional[torch.FloatTensor], output_attentions: bool = False
) -> torch.Tensor:
for i, layer_module in enumerate(self.layers):
layer_head_mask = head_mask[i] if head_mask is not None else None
(hidden_states, attn_weights) = layer_module(
hidden_states, layer_head_mask, output_attentions=output_attentions
)
return hidden_states, attn_weights
def undo_windowing(hidden_states: torch.Tensor, shape: List[int], mask_unit_shape: List[int]) -> torch.Tensor:
"""
Restore spatial organization by undoing windowed organization of mask units.
"""
num_dims = len(shape)
batch_size, hidden_size = hidden_states.shape[0], hidden_states.shape[-1]
# From: [batch_size, num_mask_unit_height*num_#mask_unit_wdith, mask_unit_height, mask_unit_width, hidden_size]
# To: [batch_size, num_mask_unit_height, num_mask_unit_width, mask_unit_height, mask_unit_width, hidden_size]
num_mask_units = [s // mu for s, mu in zip(shape, mask_unit_shape)]
hidden_states = hidden_states.view(batch_size, *num_mask_units, *mask_unit_shape, hidden_size)
# From: [batch_size, num_mask_unit_height, num_mask_unit_width, mask_unit_height, mask_unit_width, hidden_size]
# To: [batch_size, num_mask_unit_height*mask_unit_height, num_mask_unit_width*mask_unit_width, hidden_size]
permute = (
[0]
+ sum(
[list(p) for p in zip(range(1, 1 + num_dims), range(1 + num_dims, 1 + 2 * num_dims))],
[],
)
+ [len(hidden_states.shape) - 1]
)
hidden_states = hidden_states.permute(permute).reshape(batch_size, *shape, hidden_size)
return hidden_states
class HieraEncoder(nn.Module):
def __init__(self, config: HieraConfig) -> None:
super().__init__()
self.config = config
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
# query strides rule
stage_ends = [sum(config.depths[:i]) - 1 for i in range(1, len(config.depths) + 1)]
query_pool_layer = [stage_end + 1 for stage_end in stage_ends[: config.num_query_pool]]
query_strides = [
math.prod(config.query_stride) if i in query_pool_layer else 1 for i in range(sum(config.depths))
]
# Transformer blocks
self.stages = nn.ModuleList()
embed_dim = config.embed_dim
for idx_stage, depth in enumerate(config.depths):
dim_out = int(config.embed_dim * config.embed_dim_multiplier**idx_stage)
stage = HieraStage(
config=config,
depth=depth,
dim=embed_dim,
dim_out=dim_out,
num_heads=int(config.initial_num_heads * config.num_head_multiplier**idx_stage),
drop_path=dpr[sum(config.depths[:idx_stage]) : sum(config.depths[: idx_stage + 1])],
query_stride=query_strides[sum(config.depths[:idx_stage]) : sum(config.depths[: idx_stage + 1])],
window_size=int(math.prod(config.masked_unit_size) * math.prod(config.query_stride) ** -idx_stage),
use_mask_unit_attn=config.masked_unit_attention[idx_stage],
stage_num=idx_stage,
)
embed_dim = dim_out
self.stages.append(stage)
# Setting reroll schedule
# The first stage has to reverse everything
# The next stage has to reverse all but the first unroll, etc.
stage_size = [i // s for i, s in zip(config.input_size, config.patch_stride)]
unroll_schedule = [config.query_stride] * len(config.depths[:-1])
self.schedule = {}
for idx_stage in range(len(config.depths)):
self.schedule[idx_stage] = unroll_schedule, stage_size
if idx_stage < config.num_query_pool:
stage_size = [i // s for i, s in zip(stage_size, config.query_stride)]
unroll_schedule = unroll_schedule[1:]
self.gradient_checkpointing = False
def reroll(
self, hidden_states: torch.Tensor, stage_idx: int, mask: Optional[torch.BoolTensor] = None
) -> torch.Tensor:
"""
Roll the given tensor back up to spatial order assuming it's from the given block.
If no mask is provided returns:
- [batch_size, height, width, hidden_size] for 2d
- [batch_size, frames, height, width, hidden_size] for 3d
If a mask is provided returns:
- [batch_size, num_mask_units, mask_unit_height, mask_unit_width, hidden_size] for 2d
"""
schedule, size = self.schedule[stage_idx]
batch_size, seq_len, hidden_size = hidden_states.shape
num_dim = len(size)
mask_unit_shape = [1] * num_dim
for strides in schedule:
# Extract the current patch from seq_len
hidden_states = hidden_states.view(
batch_size, *strides, seq_len // math.prod(strides), *mask_unit_shape, hidden_size
)
# Move that patch into the current MU
# Example in 2d:
# Input: [batch_size, stride, stride, seq_len//(stride*stride), mask_unit_height, mask_unit_width, hidden_size]
# Output: [batch_size, seq_len//(stride*stride), stride, mask_unit_height, stride, mask_unit_width, hidden_size]
L = len(hidden_states.shape)
permute = (
[0, 1 + num_dim]
+ sum(
[list(p) for p in zip(range(1, 1 + num_dim), range(1 + num_dim + 1, L - 1))],
[],
)
+ [L - 1]
)
hidden_states = hidden_states.permute(permute)
# Reshape to [batch_size, seq_len//(stride*stride), *mask_units, hidden_size]
for i in range(num_dim):
mask_unit_shape[i] *= strides[i]
hidden_states = hidden_states.reshape(batch_size, -1, *mask_unit_shape, hidden_size)
seq_len = hidden_states.shape[1]
# Current shape (e.g., 2d: [batch_size, #num_mask_units_height*#num_mask_units_width, mask_unit_height, mask_unit_width, hidden_size])
hidden_states = hidden_states.view(batch_size, seq_len, *mask_unit_shape, hidden_size)
# If masked, return [batch_size, num_mask_units, mask_unit_height, mask_unit_width, hidden_size]
if mask is not None:
return hidden_states
# If not masked, we can return [batch_size, height, width, hidden_size]
hidden_states = undo_windowing(hidden_states, size, mask_unit_shape)
return hidden_states
def forward(
self,
hidden_states: torch.Tensor,
mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_reshaped_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
reshaped_hidden_states = self.reroll(hidden_states, stage_idx=0, mask=mask)
all_reshaped_hidden_states = all_reshaped_hidden_states + (reshaped_hidden_states,)
for i, stage_module in enumerate(self.stages):
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
stage_module.__call__, hidden_states, layer_head_mask, output_attentions
)
else:
layer_outputs = stage_module(hidden_states, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
reshaped_hidden_states = self.reroll(hidden_states, stage_idx=i, mask=mask)
all_reshaped_hidden_states = all_reshaped_hidden_states + (reshaped_hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return HieraEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
reshaped_hidden_states=all_reshaped_hidden_states,
)
def unroll(hidden_states: torch.Tensor, size: List[int], schedule: List[List[int]]) -> torch.Tensor:
"""
Reorders the tokens such that patches are contiguous in memory.
E.g., given [batch_size, (height, width), hidden_size] and stride of (stride, stride), this will re-order the tokens as
[batch_size, (stride, stride, height // stride, width // stride), hidden_size]
This allows operations like Max2d to be computed as x.view(batch_size, stride*stride, -1, hidden_size).max(dim=1).
Not only is this faster, but it also makes it easy to support inputs of arbitrary
dimensions in addition to patch-wise sparsity.
Performing this operation multiple times in sequence puts entire windows as contiguous
in memory. For instance, if you applied the stride (2, 2) 3 times, entire windows of
size 8x8 would be contiguous in memory, allowing operations like mask unit attention
computed easily and efficiently, while also allowing max to be applied sequentially.
Note: This means that intermediate values of the model are not in height x width order, so they
need to be re-rolled if you want to use the intermediate values as a height x width feature map.
The last block of the network is fine though, since by then the strides are all consumed.
"""
batch_size, _, hidden_size = hidden_states.shape
current_size = size
hidden_states = hidden_states.view(*([batch_size] + current_size + [hidden_size]))
for strides in schedule:
# Move patches with the given strides to the batch dimension
# Create a view of the tensor with the patch stride as separate dims
# For example in 2d: [batch_size, height // stride, stride, width // stride, stride, C]
current_size = [i // s for i, s in zip(current_size, strides)]
# initialize new_shape with [height // stride, stride, width // stride, stride]
new_shape = [item for pair in zip(current_size, strides) for item in pair]
# add batch_size and hidden_size to new_shape
new_shape = [batch_size] + new_shape + [hidden_size]
hidden_states = hidden_states.view(new_shape)
# Move the patch stride into the batch dimension
# For example in 2d: [batch_size, stride, stride, height // stride, width // stride, hidden_size]
num_dims = len(new_shape)
permute = [0] + list(range(2, num_dims - 1, 2)) + list(range(1, num_dims - 1, 2)) + [num_dims - 1]
hidden_states = hidden_states.permute(permute)
# Now finally flatten the relevant dims into the batch dimension
hidden_states = hidden_states.flatten(0, len(strides))
batch_size *= math.prod(strides)
hidden_states = hidden_states.reshape(-1, math.prod(size), hidden_size)
return hidden_states
class HieraPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = HieraConfig
base_model_prefix = "hiera"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module) -> None:
"""Initialize the weights"""
std = self.config.initializer_range
if isinstance(module, HieraEmbeddings):
if self.config.sep_pos_embed:
nn.init.trunc_normal_(module.position_embeddings_spatial, std=std)
nn.init.trunc_normal_(module.position_embeddings_temporal, std=std)
else:
nn.init.trunc_normal_(module.position_embeddings, std=std)
elif isinstance(module, HieraDecoder):
nn.init.trunc_normal_(module.mask_token, std=std)
nn.init.trunc_normal_(module.decoder_position_embeddings, std=std)
elif isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d)):
nn.init.trunc_normal_(module.weight, std=std)
if module.bias is not None:
nn.init.constant_(module.bias, std)
elif isinstance(module, nn.LayerNorm):
nn.init.constant_(module.bias, std)
nn.init.constant_(module.weight, self.config.layer_norm_init)
HIERA_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`HieraConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
HIERA_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BitImageProcessor.__call__`]
for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class HieraPooler(nn.Module):
def __init__(self, config: HieraConfig):
super().__init__()
num_features = int(config.embed_dim * config.embed_dim_multiplier ** (len(config.depths) - 1))
self.layernorm = nn.LayerNorm(num_features, eps=config.layer_norm_eps)
self.pooler = nn.AdaptiveAvgPool1d(1)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = hidden_states.transpose(1, 2)
pooled_output = self.pooler(hidden_states)
pooled_output = torch.flatten(pooled_output, 1)
pooled_output = self.layernorm(pooled_output)
return pooled_output
@add_start_docstrings(
"The bare Hiera Model transformer outputting raw hidden-states without any specific head on top.",
HIERA_START_DOCSTRING,
"""
add_pooling_layer (`bool`, *optional*, defaults to `True`):
Whether or not to apply pooling layer.
is_mae (`bool`, *optional*, defaults to `False`):
Whether or not to run the model on MAE mode.
""",
)
class HieraModel(HieraPreTrainedModel):
def __init__(self, config: HieraConfig, add_pooling_layer: bool = True, is_mae: bool = False):
super().__init__(config)
self.num_features = int(config.embed_dim * config.embed_dim_multiplier ** (len(config.depths) - 1))
self.embeddings = HieraEmbeddings(config, is_mae=is_mae)
self.encoder = HieraEncoder(config)
self.unroll_size = [i // s for i, s in zip(config.input_size, config.patch_stride)]
self.unroll_schedule = [config.query_stride] * len(config.depths[:-1])
self.pooler = HieraPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> HieraPatchEmbeddings:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(HIERA_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=HieraModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
noise: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
noise (`torch.FloatTensor` of shape `(batch_size, num_mask_units)`, *optional*) which is
mainly used for testing purposes to control randomness and maintain the reproducibility
when is_mae is set to True.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, len(self.config.depths))
# TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?)
expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype
if pixel_values.dtype != expected_dtype:
pixel_values = pixel_values.to(expected_dtype)
embedding_output, mask, ids_restore = self.embeddings(
pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, noise=noise
)
hidden_states = unroll(embedding_output, self.unroll_size, self.unroll_schedule)
# Discard masked tokens if mask is provided
if mask is not None:
mask_unit_area = math.prod(self.config.masked_unit_size)
batch_size, _, hidden_size = hidden_states.shape
positions = mask.unsqueeze(-1).tile(1, mask_unit_area, hidden_size)
positions = positions.bool()
hidden_states = hidden_states[positions]
hidden_states = hidden_states.view(batch_size, -1, hidden_size)
encoder_outputs = self.encoder(
hidden_states,
mask=mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = None
if self.pooler is not None:
pooled_output = self.pooler(sequence_output)
if not return_dict:
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
head_outputs = head_outputs + (mask, ids_restore) if mask is not None else head_outputs
return head_outputs + encoder_outputs[1:]
return HieraModelOutput(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
mask=mask,
ids_restore=ids_restore,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
)
class HieraDecoder(nn.Module):
def __init__(self, config: HieraConfig):
super().__init__()
num_features = int(config.embed_dim * config.embed_dim_multiplier ** (len(config.depths) - 1))
self.tokens_spatial_shape = [i // s for i, s in zip(config.input_size, config.patch_stride)]
self.tokens_spatial_shape_final = [
i // s ** (config.num_query_pool) for i, s in zip(self.tokens_spatial_shape, config.query_stride)
]
self.mask_unit_spatial_shape_final = [
i // s ** (config.num_query_pool) for i, s in zip(config.masked_unit_size, config.query_stride)
]
self.decoder_embeddings = nn.Linear(num_features, config.decoder_embed_dim)
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_embed_dim))
self.decoder_position_embeddings = nn.Parameter(
torch.zeros(1, math.prod(self.tokens_spatial_shape_final), config.decoder_embed_dim)
)
self.decoder_block = HieraStage(
config=config,
dim=config.decoder_embed_dim,
dim_out=config.decoder_embed_dim,
num_heads=config.decoder_num_heads,
depth=config.decoder_depth,
use_mask_unit_attn=False,
drop_path=[0.0] * config.decoder_depth,
query_stride=[1] * config.decoder_depth,
window_size=0,
)
self.decoder_norm = nn.LayerNorm(config.decoder_embed_dim, eps=config.layer_norm_eps)
# patch stride of prediction
self.pred_stride = config.patch_stride[-1] * (config.query_stride[-1] ** config.num_query_pool)
pred_dim = (self.pred_stride ** len(config.query_stride)) * config.num_channels
self.decoder_pred = nn.Linear(config.decoder_embed_dim, pred_dim)
def forward(
self,
encoder_hidden_states: torch.Tensor,
mask: torch.BoolTensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> torch.Tensor:
# Embed tokens
hidden_states = self.decoder_embeddings(encoder_hidden_states)
# Combine visible and mask tokens
# hidden_states : [batch_size, num_mask_units_visible, *mask_unit_spatial_shape_final, decoder_embed_dim]
# mask: [batch_size, num_mask_units]
decoder_hidden_states = torch.zeros(
*mask.shape, *hidden_states.shape[2:], device=hidden_states.device, dtype=hidden_states.dtype
)
mask_tokens = self.mask_token.view((1,) * (len(mask.shape) + len(hidden_states.shape[2:-1])) + (-1,))
new_mask_shape = mask.shape + (1,) * len(hidden_states.shape[2:])
mask = mask.reshape(new_mask_shape)
expand_shape = (-1,) * 2 + hidden_states.shape[2:]
mask = mask.expand(expand_shape)
decoder_hidden_states[mask.bool()] = hidden_states.flatten()
decoder_hidden_states = (1 - mask) * mask_tokens + mask * decoder_hidden_states
# Get back spatial order
hidden_states = undo_windowing(
decoder_hidden_states,
self.tokens_spatial_shape_final,
self.mask_unit_spatial_shape_final,
)
mask = undo_windowing(
mask[..., 0:1],
self.tokens_spatial_shape_final,
self.mask_unit_spatial_shape_final,
)
# Flatten
hidden_states = hidden_states.reshape(hidden_states.shape[0], -1, hidden_states.shape[-1])
mask = mask.view(hidden_states.shape[0], -1)
# Add pos embed
hidden_states = hidden_states + self.decoder_position_embeddings
# Apply decoder blocks
hidden_states, attn_weights = self.decoder_block(
hidden_states, head_mask=head_mask, output_attentions=output_attentions
)
hidden_states = self.decoder_norm(hidden_states)
# Predictor projection
hidden_states = self.decoder_pred(hidden_states)
return hidden_states, mask
class HieraMultiScaleHead(nn.Module):
def __init__(self, config: HieraConfig):
super().__init__()
self.mask_unit_spatial_shape_final = [
i // s ** (config.num_query_pool) for i, s in zip(config.masked_unit_size, config.query_stride)
]
self.stage_dimensions = [
int(config.embed_dim * config.embed_dim_multiplier**i) for i in range(len(config.depths))
]
current_masked_unit_size = config.masked_unit_size
self.multi_scale_fusion_heads = nn.ModuleList()
for idx in range(config.num_query_pool):
kernel = [i // s for i, s in zip(current_masked_unit_size, self.mask_unit_spatial_shape_final)]
current_masked_unit_size = [i // s for i, s in zip(current_masked_unit_size, config.query_stride)]
self.multi_scale_fusion_heads.append(
conv_nd(len(config.query_stride))(
self.stage_dimensions[idx],
self.stage_dimensions[-1],
kernel_size=kernel,
stride=kernel,
)
)
self.multi_scale_fusion_heads.append(nn.Identity())
def apply_fusion_head(self, head: nn.Module, hidden_states: torch.Tensor) -> torch.Tensor:
if isinstance(head, nn.Identity):
return hidden_states
batch_size, num_mask_units = hidden_states.shape[0:2]
# From: [batch_size, num_mask_units, mask_unit_height, mask_unit_width, hidden_size]
# To: head([batch_size * num_mask_units, hidden_size, mask_unit_height, mask_unit_width])
permute = [0] + [len(hidden_states.shape) - 2] + list(range(1, len(hidden_states.shape) - 2))
hidden_states = hidden_states.reshape(batch_size * num_mask_units, *hidden_states.shape[2:])
hidden_states = hidden_states.permute(permute)
hidden_states = head(hidden_states)
# Restore original layout
permute = [0] + list(range(2, len(hidden_states.shape))) + [1]
hidden_states = hidden_states.permute(permute)
hidden_states = hidden_states.reshape(
batch_size, num_mask_units, *hidden_states.shape[1:-1], hidden_states.shape[-1]
)
return hidden_states
def forward(self, feature_maps: List[torch.Tensor]) -> torch.Tensor:
# Multi-scale fusion
hidden_states = 0.0
for head, feature_map in zip(self.multi_scale_fusion_heads, feature_maps):
hidden_states = hidden_states + self.apply_fusion_head(head, feature_map)
return hidden_states
@add_start_docstrings(
"""The Hiera Model transformer with the decoder on top for self-supervised pre-training.
<Tip>
Note that we provide a script to pre-train this model on custom data in our [examples
directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
</Tip>
""",
HIERA_START_DOCSTRING,
)
class HieraForPreTraining(HieraPreTrainedModel):
def __init__(self, config: HieraConfig) -> None:
super().__init__(config)
# Encoder
self.hiera = HieraModel(config, add_pooling_layer=False, is_mae=True)
self.encoder_norm = nn.LayerNorm(self.hiera.num_features, eps=config.layer_norm_eps)
# Multi-scale fusion heads
self.multiscale_fusion = HieraMultiScaleHead(config)
# Decoder
self.decoder = HieraDecoder(config)
self.pred_stride = self.decoder.pred_stride
# Initialize weights and apply final processing
self.post_init()
def get_pixel_label_2d(self, pixel_values: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
# mask (boolean tensor): True means *masked*
pixel_values = pixel_values.permute(0, 2, 3, 1)
size = self.pred_stride
label = pixel_values.unfold(1, size, size).unfold(2, size, size)
label = label.flatten(1, 2).flatten(2)
label = label[mask.bool()]
if self.config.norm_pix_loss:
mean = label.mean(dim=-1, keepdim=True)
var = label.var(dim=-1, keepdim=True)
label = (label - mean) / (var + 1.0e-6) ** 0.5
return label
def get_pixel_label_3d(self, pixel_values: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
# mask (boolean tensor): True means *masked*
pixel_values = pixel_values[:, :, :: self.patch_stride[0], :, :]
size = self.pred_stride
label = pixel_values.unfold(3, size, size).unfold(4, size, size)
# Different from 2D
label = label.permute(0, 2, 3, 4, 5, 6, 1)
label = label.flatten(1, 3).flatten(2)
label = label[mask.bool()]
if self.config.norm_pix_loss:
mean = label.mean(dim=-1, keepdim=True)
var = label.var(dim=-1, keepdim=True)
label = (label - mean) / (var + 1.0e-6) ** 0.5
return label
def forward_loss(self, pixel_values: torch.Tensor, logits: torch.Tensor, mask: torch.BoolTensor):
# We invert the mask such that 1.0 is *masked*
mask = 1 - mask
if len(self.config.query_stride) == 2:
label = self.get_pixel_label_2d(pixel_values, mask)
elif len(self.config.query_stride) == 3:
label = self.get_pixel_label_3d(pixel_values, mask)
else:
raise NotImplementedError("Only images and videos are supported")
logits = logits[mask.bool()]
loss = (logits - label) ** 2
loss = loss.mean()
return loss
@add_start_docstrings_to_model_forward(HIERA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=HieraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
noise: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, HieraForPreTrainingOutput]:
r"""
noise (`torch.FloatTensor` of shape `(batch_size, num_mask_units)`, *optional*) which is
mainly used for testing purposes to control randomness and maintain the reproducibility
when is_mae is set to True.
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, HieraForPreTraining
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("EduardoPacheco/hiera-tiny-224-mae")
>>> model = HieraForPreTraining.from_pretrained("EduardoPacheco/hiera-tiny-224-mae")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 196, 768]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.hiera(
pixel_values,
noise=noise,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=True,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=True,
)
feature_maps = outputs.reshaped_hidden_states
mask = outputs.mask
ids_to_restore = outputs.ids_restore
# Take only the query pooled and last hidden states
feature_maps = feature_maps[1 : self.hiera.config.num_query_pool + 1] + (feature_maps[-1],)
fused_hidden_states = self.multiscale_fusion(feature_maps)
fused_hidden_states = self.encoder_norm(fused_hidden_states)
# Reconstruct pixel values
logits, mask = self.decoder(
fused_hidden_states,
mask=mask,
head_mask=head_mask,
output_attentions=output_attentions,
)
loss = self.forward_loss(pixel_values, logits, mask)
if not return_dict:
output = (logits, mask, ids_to_restore)
if output_hidden_states:
output = output + (outputs.hidden_states,)
if output_attentions:
output = output + (outputs.attentions,)
if output_hidden_states:
output = output + (outputs.reshaped_hidden_states,)
return ((loss,) + output) if loss is not None else output
return HieraForPreTrainingOutput(
loss=loss,
logits=logits,
mask=mask,
ids_restore=ids_to_restore,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
reshaped_hidden_states=outputs.reshaped_hidden_states if output_hidden_states else None,
)
@add_start_docstrings(
"""
Hiera Model transformer with an image classification head on top (a linear layer on top of the final hidden state with
average pooling) e.g. for ImageNet.
<Tip>
Note that it's possible to fine-tune Hiera on higher resolution images than the ones it has been trained on, by
setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
position embeddings to the higher resolution.
</Tip>
""",
HIERA_START_DOCSTRING,
)
class HieraForImageClassification(HieraPreTrainedModel):
def __init__(self, config: HieraConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.hiera = HieraModel(config, add_pooling_layer=True, is_mae=False)
# Classifier head
self.classifier = (
nn.Linear(self.hiera.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(HIERA_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=HieraForImageClassificationOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, HieraForImageClassificationOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.hiera(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[4:]
return ((loss,) + output) if loss is not None else output
return HieraForImageClassificationOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"""
Hiera backbone, to be used with frameworks like DETR and MaskFormer.
""",
HIERA_START_DOCSTRING,
)
class HieraBackbone(HieraPreTrainedModel, BackboneMixin):
def __init__(self, config: HieraConfig):
super().__init__(config)
super()._init_backbone(config)
self.num_features = [config.embed_dim] + [
int(config.embed_dim * config.embed_dim_multiplier**i) for i in range(len(config.depths))
]
self.embeddings = HieraEmbeddings(config, is_mae=False)
self.encoder = HieraEncoder(config)
# Add layer norms to hidden states of out_features
hidden_states_norms = {}
for stage, num_channels in zip(self._out_features, self.channels):
hidden_states_norms[stage] = nn.LayerNorm(num_channels)
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def forward(
self,
pixel_values: torch.Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("EduardoPacheco/hiera-tiny-224")
>>> model = AutoBackbone.from_pretrained(
... "EduardoPacheco/hiera-tiny-224", out_features=["stage1", "stage2", "stage3", "stage4"]
... )
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 768, 7, 7]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
embedding_output, _, _ = self.embeddings(pixel_values)
outputs = self.encoder(
embedding_output,
head_mask=None,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=True,
)
hidden_states = outputs.reshaped_hidden_states
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
batch_size, height, width, num_channels = hidden_state.shape
hidden_state = hidden_state.view(batch_size, height * width, num_channels)
hidden_state = self.hidden_states_norms[stage](hidden_state)
hidden_state = hidden_state.view(batch_size, height, width, num_channels)
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
feature_maps += (hidden_state,)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
# %%
|