Mohamadlh commited on
Commit
17b5b78
·
1 Parent(s): b1a7f00

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -40
README.md CHANGED
@@ -8,7 +8,7 @@ tags:
8
  - zero-shot-classification
9
  - debarta-v3
10
  model-index:
11
- - name: distilbert-base-multilingual-cased-sentiments-student
12
  results: []
13
  datasets:
14
  - tyqiangz/multilingual-sentiments
@@ -30,7 +30,7 @@ language:
30
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
  should probably proofread and complete it, then remove this comment. -->
32
 
33
- # distilbert-base-multilingual-cased-sentiments-student
34
 
35
  This model is distilled from the zero-shot classification pipeline on the Multilingual Sentiment
36
  dataset using this [script](https://github.com/huggingface/transformers/tree/main/examples/research_projects/zero-shot-distillation).
@@ -50,7 +50,7 @@ but we'll pretend and ignore the annotations for the sake of example.
50
  from transformers import pipeline
51
 
52
  distilled_student_sentiment_classifier = pipeline(
53
- model="lxyuan/distilbert-base-multilingual-cased-sentiments-student",
54
  return_all_scores=True
55
  )
56
 
@@ -75,43 +75,6 @@ distilled_student_sentiment_classifier("私はこの映画が大好きで、何
75
 
76
  ```
77
 
78
-
79
- ## Training procedure
80
-
81
- Notebook link: [here](https://github.com/LxYuan0420/nlp/blob/main/notebooks/Distilling_Zero_Shot_multilingual_distilbert_sentiments_student.ipynb)
82
-
83
- ### Training hyperparameters
84
-
85
- Result can be reproduce using the following commands:
86
-
87
- ```bash
88
- python transformers/examples/research_projects/zero-shot-distillation/distill_classifier.py \
89
- --data_file ./multilingual-sentiments/train_unlabeled.txt \
90
- --class_names_file ./multilingual-sentiments/class_names.txt \
91
- --hypothesis_template "The sentiment of this text is {}." \
92
- --teacher_name_or_path MoritzLaurer/mDeBERTa-v3-base-mnli-xnli \
93
- --teacher_batch_size 32 \
94
- --student_name_or_path distilbert-base-multilingual-cased \
95
- --output_dir ./distilbert-base-multilingual-cased-sentiments-student \
96
- --per_device_train_batch_size 16 \
97
- --fp16
98
- ```
99
-
100
- If you are training this model on Colab, make the following code changes to avoid Out-of-memory error message:
101
- ```bash
102
- ###### modify L78 to disable fast tokenizer
103
- default=False,
104
-
105
- ###### update dataset map part at L313
106
- dataset = dataset.map(tokenizer, input_columns="text", fn_kwargs={"padding": "max_length", "truncation": True, "max_length": 512})
107
-
108
- ###### add following lines to L213
109
- del model
110
- print(f"Manually deleted Teacher model, free some memory for student model.")
111
-
112
- ###### add following lines to L337
113
- trainer.push_to_hub()
114
- tokenizer.push_to_hub("distilbert-base-multilingual-cased-sentiments-student")
115
 
116
  ```
117
 
 
8
  - zero-shot-classification
9
  - debarta-v3
10
  model-index:
11
+ - name: Softechlb/Sent_analysis_CVs
12
  results: []
13
  datasets:
14
  - tyqiangz/multilingual-sentiments
 
30
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
  should probably proofread and complete it, then remove this comment. -->
32
 
33
+ # Softechlb/Sent_analysis_CVs
34
 
35
  This model is distilled from the zero-shot classification pipeline on the Multilingual Sentiment
36
  dataset using this [script](https://github.com/huggingface/transformers/tree/main/examples/research_projects/zero-shot-distillation).
 
50
  from transformers import pipeline
51
 
52
  distilled_student_sentiment_classifier = pipeline(
53
+ model="Softechlb/Sent_analysis_CVs",
54
  return_all_scores=True
55
  )
56
 
 
75
 
76
  ```
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
  ```
80