--- language: - ru license: apache-2.0 base_model: openai/whisper-base tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Base Ru - Swedish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: default split: test args: 'config: ru, split: test' metrics: - name: Wer type: wer value: 27.381068672462632 --- # Whisper Base Ru - Swedish This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co./openai/whisper-base) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3077 - Wer: 27.3811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2882 | 0.49 | 1000 | 0.3627 | 30.3885 | | 0.2675 | 0.98 | 2000 | 0.3264 | 28.4422 | | 0.1765 | 1.48 | 3000 | 0.3146 | 27.6424 | | 0.1757 | 1.97 | 4000 | 0.3077 | 27.3811 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 1.13.1 - Datasets 2.15.0 - Tokenizers 0.15.0