File size: 4,261 Bytes
89831d5 a519f10 5034d89 89831d5 a519f10 e7ae5bd a519f10 0a2b9c6 1f9a0a0 a519f10 0a2b9c6 ebffa9b 0a2b9c6 a519f10 d32df80 a519f10 e7ae5bd a519f10 0a2b9c6 a519f10 0a2b9c6 a519f10 169bba5 a519f10 169bba5 a519f10 0a2b9c6 e7ae5bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
---
license: apache-2.0
tags:
- snowflake
- arctic
- moe
---
## Model Details
Arctic is a dense-MoE Hybrid transformer architecture pre-trained from scratch by the Snowflake AI
Research Team. We are releasing model checkpoints for both the base and instruct-tuned versions of
Arctic under an Apache-2.0 license. This means you can use them freely in your own research,
prototypes, and products. Please see our blog
[Snowflake Arctic: The Best LLM for Enterprise AI — Efficiently Intelligent, Truly Open](https://www.snowflake.com/blog/arctic-open-and-efficient-foundation-language-models-snowflake)
for more information on Arctic and links to other relevant resources such as our series of cookbooks
covering topics around training your own custom MoE models, how to produce high-quality training data,
and much more.
* [Arctic-Base](https://huggingface.co./Snowflake/snowflake-arctic-base/)
* [Arctic-Instruct](https://huggingface.co./Snowflake/snowflake-arctic-instruct/)
For the latest details about Snowflake Arctic including tutorials, etc. please refer to our github repo:
* https://github.com/Snowflake-Labs/snowflake-arctic
**Model developers** Snowflake AI Research Team
**License** Apache-2.0
**Input** Models input text only.
**Output** Models generate text and code only.
**Model Release Date** April, 24th 2024.
## Model Architecture
Arctic combines a 10B dense transformer model with a residual 128x3.66B MoE MLP resulting in 480B
total and 17B active parameters chosen using a top-2 gating. For more details about Arctic's model
Architecture, training process, data, etc. [see our series of cookbooks](https://www.snowflake.com/en/data-cloud/arctic/cookbook/).
## Usage
As of 4/24/2024 we are actively working with the maintainers of `transformers` to include the Arctic
model implementation. Until this support is released please follow these instructions to get the
required dependencies for using Arctic:
```python
pip install git+https://github.com/Snowflake-Labs/transformers.git@arctic
```
Arctic leverages several features from [DeepSpeed](https://github.com/microsoft/DeepSpeed), you will need to
install the latest version of DeepSpeed to get all of these required features:
```python
pip install "deepspeed>=0.14.2"
```
### Inference examples
Due to the model size we recommend using a single 8xH100 instance from your
favorite cloud provider such as: AWS [p5.48xlarge](https://aws.amazon.com/ec2/instance-types/p5/),
Azure [ND96isr_H100_v5](https://learn.microsoft.com/en-us/azure/virtual-machines/nd-h100-v5-series), etc.
In this example we are using FP8 quantization provided by DeepSpeed in the backend, we can also use FP6
quantization by specifying `q_bits=6` in the `ArcticQuantizationConfig` config. The `"150GiB"` setting
for max_memory is required until we can get DeepSpeed's FP quantization supported natively as a [HFQuantizer](https://huggingface.co./docs/transformers/main/en/hf_quantizer#build-a-new-hfquantizer-class) which we
are actively working on.
```python
import os
# enable hf_transfer for faster ckpt download
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.models.arctic.configuration_arctic import ArcticQuantizationConfig
tokenizer = AutoTokenizer.from_pretrained("Snowflake/snowflake-arctic-instruct")
quant_config = ArcticQuantizationConfig(q_bits=8)
model = AutoModelForCausalLM.from_pretrained(
"Snowflake/snowflake-arctic-instruct",
low_cpu_mem_usage=True,
device_map="auto",
ds_quantization_config=quant_config,
max_memory={i: "150GiB" for i in range(8)},
torch_dtype=torch.bfloat16)
messages = [{"role": "user", "content": "What is 1 + 1 "}]
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to("cuda")
outputs = model.generate(input_ids=input_ids, max_new_tokens=20)
print(tokenizer.decode(outputs[0]))
```
The Arctic github page has additional code snippets and examples around running inference:
* Example with pure-HF: https://github.com/Snowflake-Labs/snowflake-arctic/blob/main/inference
* Tutorial using vLLM: https://github.com/Snowflake-Labs/snowflake-arctic/tree/main/inference/vllm |